神戸大学大学院自然科学研究科博士前期課程修士学位論文

JLCハドロンカロリメータ テストモジュールの 製作及び性能評価

竹内 彰

平成 12 年 2 月 10 日

概 要

JLC計画の骨子は、電子・陽電子リニアコライダーの建設と、そこでの高エネルギー素 粒子実験であり、JLC計画の主要な目的としては標準模型で予言されているヒッグス粒 子の探索と標準模型を越えた物理を捉えること、また近年発見されたトップクォークの詳 細な研究等がある。JLC計画では加速器の段階的な改良により衝突エネルギーを TeV 領 域に上げていくため、大きな成果が期待される。また詳細な実験を行うためには高性能な 測定器が要求され、各測定器ごとにサブグループを組織し、要求される性能を実現すべく R&Dを行っている。

我々カロリメータグループでは、JLC ハドロンカロリメータのプロトタイプとして実機 に近いタワー構造を持った補償型カロリメータを製作し、高エネルギー加速器研究機構及 び米国 Fermi 国立加速器研究所に於いてテスト実験を行い、性能を評価した。実験に使用 したビームは両実験合わせて、1~200GeV/cの π と 1~150GeV/cの e である。その結 果、 π に対するエネルギー分解能 $\sigma/E = (42.0 \pm 1.2)\%/\sqrt{E[\text{GeV}]} \oplus (0.0 \pm 0.6)\%$ 、e に 対するエネルギー分解能 $\sigma/E = (23.7 \pm 0.2)\%/\sqrt{E[\text{GeV}]} \oplus (0.0 \pm 1.4)\%$ であった (但し、 \oplus は二乗和を表し、 $a \oplus b \equiv \sqrt{a^2 + b^2}$)。

目 次

第1章	JLC計画	6
1.1	JLC 計画の概要	6
1.2	JLCにおける物理.....................	7
1.3	JLC 測定器	7
	1.3.1 測定器概観	7
	1.3.2 バーテックス測定器 (VTX)	7
	1.3.3 中央飛跡検出器 (CDC)	8
	1.3.4 カロリメータ (CAL)	8
	1.3.5 ミューオン検出器 (MUON)	8
1.4	本研究の目的	8
第2章	カロリメータ	11
2.1	カロリメータの原理	11
	2.1.1 電磁カスケードシャワー	
	2.1.2 ハドロンカスケードシャワー	
2.2	補償のメカニズム......................	13
2.3	カロリメータの分解能	13
2.0		10
第3章	KEK でのテスト実験	15
2.5 第3章 3.1	KEK でのテスト実験 テストモジュールと実験環境	15
第3章 3.1	KEK でのテスト実験 テストモジュールと実験環境	15
第3章 3.1	KEK でのテスト実験 テストモジュールと実験環境	15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
第3章 3.1	KEK でのテスト実験 テストモジュールと実験環境 3.1.1 テストモジュール 3.1.2 ビームライン 3.1.3 測定項目及びオンライントリガー条件	15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
第3章 3.1 3.2	KEK でのテスト実験 テストモジュールと実験環境	15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
第3章 3.1 3.2	KEK でのテスト実験 テストモジュールと実験環境	15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18
第3章 3.1 3.2	KEK でのテスト実験 テストモジュールと実験環境	15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18 19 10 11 12 13 14 15 15 16 17 18 18 19 10 11 12 13 14 15 15 16 17 18 18 11 12
第3章 3.1 3.2 3.3	KEK でのテスト実験 テストモジュールと実験環境	15 15 15 15 15 15 15 15 15 15 15 15 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 17 18
第3章 3.1 3.2 3.3	KEK でのテスト実験 テストモジュールと実験環境	15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 21 22 22 22
第3章 3.1 3.2 3.3	KEK でのテスト実験 テストモジュールと実験環境	15 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18 18 18 21 22 22 22 23
第3章 3.1 3.2 3.3	KEK でのテスト実験 テストモジュールと実験環境	15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 19 18 19 18 19 18 19 10 11 12 13 14 14
第3章 3.1 3.2 3.3	KEK でのテスト実験 テストモジュールと実験環境	15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 19 18 19 18 19 18 19 10 11 11 12 13 14 15 15 18 19 110 111 111 112 113
 第3章 3.1 3.2 3.3 第4章 	KEK でのテスト実験 テストモジュールと実験環境	15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 19 18 18 19 18 19 18 19 18 19 10 11 12 13 14 15 15 18 19 10 11 12 13 14 15

	4.1.1	テストモジュール	26
	4.1.2	ビームライン	26
4.2	測定結	果	28
	4.2.1	事象選択	28
	4.2.2	キャリブレーション	30
4.3	解析結	果	31
	4.3.1	典型的な波高分布...........................	31
	4.3.2	応答の線形性..............................	34
	4.3.3	エネルギー分解能.............................	35
	4.3.4	e/π 比	36
第5章	結論	:	38
付録A	Presh	ower 及び Showermax 測定器の開発	43
A.1	Presho	wer 測定器	43
	A.1.1	Preshower 測定器の構造	43
	A.1.2	シンチレーターの光量測定........................	43
A.2			
	Shower	rmax 測定器	46
	Shower A.2.1	rmax 測定器 Showermax 測定器の構造	46 46

A.2.3 T912 実験での Showermax 測定器キャリブレーション 48

図目次

1.1	JLC 概略図	6
1.2	JLC 測定器	9
2.1	サンプリングカロリメータの模式図.........................	11
2.2	純粋ハドロンシャワー成分と電磁成分の応答を示す模式図	14
3.1	測定器全体図	16
3.2	loop 型 tile-fiber	16
3.3	straight-groove型 tile-fiber	16
3.4	ビームライン上のトリガー用測定器等の配置概略図	17
3.5	μ -matrix	17
3.6	, トリガカウンタによるカット	19
3.7	チェレンコフカウンタによるカット	20
3.8	μ -counter によるカット	20
3.9	μ 粒子の波高分布	21
3.10	e, π の応答 (1GeV)	22
3.11	e_{π} の応答 (2GeV)	22
3.12	e 、 π の応答 (3GeV)	22
3.13	e 、 π の応答 (4GeV)	22
3.14	エネルギー線形性................................	23
3.15	エネルギー分解能................................	24
3.16	e/π 比	25
4.1	ビームライン上のトリガー用測定器等の配置概略図	27
4.2	トリガカウンタによるカット	29
4.3	μ -counter によるカット	29
4.4	μ 粒子の波高分布	30
4.5	· Preshowerと HCAL の相関 · · · · · · · · · · · · · · · · · · ·	31
4.6	e, π の応答 (200GeV tune)	32
4.7	e, π の応答 (150GeV tune)	32
4.8	e_{π} の応答 (100GeV tune)	32
4.9	e, π の応答 (750GeV tune)	33
4.10	e 、 π の応答 (50GeV tune)	33
4.11	e 、 π の応答 (25GeV tune)	33
4.12	e 、 π の応答 (10GeV tune)	33

4.10	エネルギー線形性..................................	34
4.14	Pershower 付きエネルギー線形性	34
4.15	エネルギー分解能................................	35
4.16	Pershower 付きエネルギー分解能	35
4.17	e/π 比	36
4.18	Pershower 付き e/π 比	36
5.1	両実験を通じてのエネルギー線形性...................	39
5.2	両実験を通じてのエネルギー分解能................	40
5.3	両実験を通じての e/π 比	41
A.1	Preshower	44
A.1 A.2	Preshower	44 44
A.1 A.2 A.3	Preshower	44 44 45
A.1 A.2 A.3 A.4	Preshower	44 44 45 45
A.1 A.2 A.3 A.4 A.5	Preshower	44 44 45 45 46
A.1 A.2 A.3 A.4 A.5 A.6	Preshower	44 45 45 46 47
A.1 A.2 A.3 A.4 A.5 A.6 A.7	Preshower	44 45 45 46 47 47
A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8	Preshower	$44 \\ 45 \\ 45 \\ 46 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47$

表目次

1.1	JLC 測定器の諸性能	10
3.1 3.2 3.3	シンチレーショントリガーカウンタの大きさ	17 18 25
4.1	シンチレーショントリガーカウンタの大きさ	26
4.2	入射ビームの運動量	27
4.3	カロリメータの平均応答とエネルギー分解能............	37

第1章 JLC計画

1.1 JLC 計画の概要

JLC 計画の骨子は、電子・陽電子リニアコライダーの建設し、そこで高エネルギー素粒 子実験を行うものである。 重心系エネルギー約 250GeV の衝突実験から開始し、加速器 の段階的な改良により、 衝突エネルギーを TeV 領域に上げていく。実験室内にビッグバ ン直後の超高エネルギー状態を作りだし、宇宙創成の謎に挑むものである。

エネルギーが 100GeV までの電子・陽電子衝突型加速器としては、トリスタンや LEP の ようなリング加速器が最適だが、100GeV 以上のリング加速器では、ビームが磁場で曲げ られる時に輻射する放射光損失を補うための電力消費が膨大になり、電力消費を抑えるに は、リングの周長をビームエネルギーの4乗で大きくしなければならない。JLC は、2 台の線形加速器を対向させ、電子と陽電子を加速し衝突させる新方式の衝突型加速器であ る。電子・陽電子ビームは直線上に加速されるので、原理的には放射光損失がなく、電力 消費に対する加速効率が良く、ビームを衝突点に向けて 250GeV~750GeV まで加速した 後、ファイナルフォーカス系で絞り込んで衝突させる(図 1.1)。

図 1.1: JLC 概略図

JLC計画の主要な目的としては、標準理論で予言されるヒッグス粒子の探索、また近年 発見されたトップクォークの詳細な研究などが挙げられる。世界的に見て、これら TeV 領 域の素粒子物理研究が行える現在進行中の計画は、ヨーロッパの LHC が唯一のもである。 しかし LHC はハドロンコライダーであるため、エネルギーは高く出来るがバックグラウ ンドが多い等の問題もあり、TeV 領域の研究を全てカバーすることは困難であり、JLC の 早期実現が望まれている。

1.2 JLCにおける物理

近年の世界各地におけるさまざまな素粒子物理学実験の結果は全て標準模型によって説 明され、その理論の妥当性を高めている。その標準模型にとって最大の課題は、質量を作 り出す機構を担う粒子、ヒッグス粒子が今だ未発見であることである。ヒッグス粒子の質 **量に対しては強い制限は無いが、ヒッグス粒子の質量が重ければヒッグス粒子の四点相互** 作用の強さが発散してしまうことから、ヒッグス粒子の質量は 1TeV 程度以下と考えられ ている。また、ヒッグス粒子の質量が 180GeV 以下なら四点相互作用はプラン クスケール に至るまで摂動論的であり、標準模型が高エネルギーまで成り立つ事になる。但し、標準 模型は電弱対称性の自発的破れにより、エネルギーが 246GeV より上では破綻する (カッ トオフスケール)。この限界より上で適用される理論の一つに超対称性 (SUSY) 模型があ る。超対称性とはボソンとフェルミオンの間の対称性であり、この理論では全てのフェル ミオン (ボソン)にはその超対称性パートナーであるボソン (フェルミオン)が存在する。最 も単純な SUSY 模型である最小超対称標準模型 (MSSM) では、2 つのヒッグス二重項が仮 定されている。CP-偶のスカラー h^0 、 $H^0(m_{h0} < m_{H0})$ と CP-奇のスカラー A^0 、及び一 対の電荷ヒッグス H[±] がある。このとき最も軽いヒッグス粒子は 180GeV 以下であること が予想されている。このようなヒッグス粒子は、存在するならば JLC で必ず発見出来る ものであり、発見されない場合は SUSY 理論は排除される。

1.3 JLC 測定器

1.3.1 測定器概観

電子・陽電子衝突過程は全重心系エネルギーが反応の素過程に使用されるため、終状態 の識別が容易であり確実な新粒子探索や精密実験が可能である。加速器の性能を100%引 出し、この可能性を現実のものとするためには、終状態に生成されるニュートリノを除く 全ての粒子を精度よく検出する高性能な測定器が必要であり、満足すべき基本性能は以下 のように設定された (JLC-I)。

- 1. | cos θ | < 0.98 の角度領域で粒子の測定が可能であること。
- 2. W^{\pm} 、 Z^{0} ボソンによるクォークジェットが識別可能、並びにc、bクォークジェットが 識別可能であること。
- 3. 軽いヒッグスの生成過程 $e^+e^- \rightarrow Z^0H$ において、 Z^0 崩壊からのレプトン対を使った質量欠損法によるヒッグス粒子の分解能がビームの広がり 200MeV と同等であること。

現在、これら構造及び要求される性能についての再検討が進められている。

1.3.2 バーテックス測定器 (VTX)

衝突点のまわりを同心円状に囲む3層以上のピクセル型電荷結合素子 (Si-CCD) からなる。バーテックス測定器は電子-陽電子の衝突点のすぐ近くに置かれて、荷電粒子の飛跡を

高い精度で測定する。そうした情報からジェットの中の B 中間子や D 中間子の崩壊点を 見つけ出す事によって、そのジェットが b クォークまたは c クォークから発生したことを 識別することが出来る。また空間分解能が高いので、CDC と併せて運動量測定を行う。

1.3.3 中央飛跡検出器 (CDC)

中央飛跡検出器は 2 テスラの磁場を用いて粒子の運動量と電荷を測定する事が目的で、 小型ジェットセル構造を持った円筒型ドリフトチェンバーからなる。荷電粒子の通過位置 は、その通過時間から計った各ワイヤーでの電離電子の到達時間を測定することによって 定まる。さらに、ジェット不変質量法による質量分解能を向上させるためには、荷電粒子の 飛跡とカロリメタのクラスターを対応させる必要があり、ステレオワイヤーを用いたビー ム軸方向の位置分解能として、 $\sigma_z \leq 1$ mmが要求される。

1.3.4 カロリメータ (CAL)

カロリメータは粒子のエネルギーを測定する測定器であり、JLCでは鉛とプラスチック シンチレータをサンドイッチ状に配置した、補償型サンプリングカロリメータの R&D を 行っている。このカロリメータは衝突点方向へのタワー構造になっていて、中央バレル部 分と側面のエンドキャップ部分を合わせて 3750 本のタワーで構成される。各タワーは、主 として電子を測定する電磁カロリメータ部分と、ハドロンカロリメータ部分に別れている。 JLC の主要な目的の一つにヒッグス粒子の探索があるが、ヒッグス粒子の主な生成反応で ある $e^+e^- \rightarrow ZH$ に関与している Z ボソンからのジェットを精度良く測定する必要があ り、特にハドロンに関して高いエネルギー分解能が要求される。要求されるエネルギー分 解能は、電子と光子に対して 15%/ \sqrt{E} 、ハドロンに対して 40%/ \sqrt{E} である。

1.3.5 ミューオン検出器 (MUON)

ミューオン検出器の主な目的は µ 粒子の識別であり、シングルセル・ドリフトチェンバー のスーパーレイヤー6層と、1層のプラスチックシンチレーターからなる。µ 粒子は新粒子 探索における明快な信号であるため、立体角を出来るだけ広くとり、全体を隙間無く覆う。

1.4 本研究の目的

JLC における最重要課題の一つはヒッグス粒子の探索と研究である。JLC で想定される エネルギー領域では、主に $e^+e^- \rightarrow ZH$ の反応でヒッグス粒子は生成される。この反応は Z粒子がレプトン対に崩壊するチャンネルにおいて最も容易に検出され得る。しかしこの チャンネルの分岐比は全体の7%しかなく、統計精度の高い測定を行う為には70%もの分 岐比を持つZ粒子のクォーク対への崩壊を測定する事、即ちジェットを精度良く測定する 事が不可欠である。

図 1.2: JLC 測定器

Z 粒子がジェットに崩壊する反応のバックグラウンドは、主に W 対生成と Z 対生成である。W 対生成はバーテックス測定器を用いた b タギングによって効率よく取り除く事が出来るが、 $Z \rightarrow b\overline{b}$ の崩壊は、2ジェットの不変質量分布によってのみ $H \rightarrow b\overline{b}$ と区別する事が出来る。したがって、W、Zを不変質量から識別可能にするために、カロリメータのエネルギー分解能には以下のような性能が要求される。

- 15%/√E ⊕ 1%(電子及び光子)
- $40\%/\sqrt{E} \oplus 2\%($ ハドロン)

ここで、 \oplus は二乗和を表し、 $a \oplus b \equiv \sqrt{a^2 + b^2}$ である。

我々カロリメータグループはこの性能を実現するべく、鉛とプラスチックシンチレータ を用いた補償型サンプリングカロリメータの R&D を行っている。1998 年に KEK(高エネ ルギー加速器研究機構) で行われたテスト実験 (T411 実験) では、実機に近いタワー構造を もったテストモジュールを製作し、その性能を評価した。また翌年の 1999 には FNAL(米 国 Fermi 国立加速器研究所) でテスト実験 (T912 実験) を行った。その目的は、本実験を 想定した高いエネルギーを持った粒子に対する振舞を調査し、また T411 で不定であった エネルギー分解能の定数項を決定するためである。その際、実機製作に向けて前置検出器 の開発も行い、その性能も併せて評価した。

DETECTOR	TYPE	CONFIGURATION	PERFORMANCE
VTX	Silicon CCD	Pixel Size: $25\mu m$	Position Resolution: $\sigma = 7.2 \mu m$
		# of layers: at least 3 layers	
		Layer Position:	Impact Parameter Resolution:
		r = 2.5, 5.0, 7.5 cm	$\delta[\mu]{ m m}$
		Thickness: $500 \mu m/layer$	$\delta^2 = 11.4^2 + (28.8/p)^2 / \sin^3 \theta$
		$\mid\cos\theta\mid<0.95$	
CDC	$\operatorname{Small-cell}$	Radius: $r = 0.3 - 2.3m$	Position Resolution:
	Jet Chamber	Length: $l = 4.6m$	$\sigma_X = 100 \mu \mathrm{m} \; (/\mathrm{axial \; wire})$
		# of Sampling $= 100$	$\sigma_Z = 2$ mm (/tsereo wire)
		$ \cos \theta < 0.70$ (full sampling)	Momentum Resolution:
		$ \cos \theta < 0.95(20 \text{ sampling})$	$\sigma p_t / P_t = 1.1 \times 10^{-4} P_t \oplus 0.1\%$
			$\sigma p_t/P_t = 5 \times 10^{-5} P_t \oplus 0.1\%$
			(with vertex constrains)
CAL	Lead +	EM part: thickness: $29X_0$	Energy Resolution:
	Plastic	cell size: $10 \text{cm} \times 10 \text{cm}$	$\sigma_E/E = 15\%/\sqrt{E} \oplus 1\%(e,\gamma)$
	-Scintillator	HAD part: thickness: $5.6\lambda_I$	$\sigma_E/E = 40\%/\sqrt{E} \oplus 2\%(hadron)$
	Sandwitch	cell size: $20 \mathrm{cm} \times 20 \mathrm{cm}$	
		Si Pad:	Si Pad Position Resolution:
	(compensated)	pad size = $1 \text{cm} \times 1 \text{cm}$	$\sigma = 3$ mm
		$ \cos \theta < 0.99$	Si Pad e/ π Rejection = 1/50
MUON	Single Cell	# of Superlayers: 6	Position Resolution:
	Drift Chamber	$ \cos \theta < 0.99$	$\sigma = 500 \mu \mathrm{m}$
			$P_t > 3.5 \text{Gev/c} \text{ (barrel)}$

表 1.1: JLC 測定器の諸性能

論文の構成は以下の通り。

1章:JLC計画について
 2章:カロリメータについて
 3章:高エネルギー加速器研究機構 (KEK) でのテスト実験 (T411実験)
 4章:米国 Fermi 加速器研究所 (FNAL) でのテスト実験 (T912実験)
 5章:両実験のまとめ
 付録:T912に向けて製作した前置検出器について

第2章 カロリメータ

2.1 カロリメータの原理

カロリメータは入射粒子の全エネルギーをカスケードシャワーにより測定器内で失わせ、 そのエネルギーを測定する装置である。高エネルギー粒子が物質に入射すると、電磁相互 作用及び強い相互作用により二次粒子が作られる。更にその二次粒子が新しい粒子が作る といった過程を繰り返しカスケードシャワーが生成される。

カロリメータの構造は、入射粒子の全エネルギーを吸収するに十分な厚さの吸収体と、 吸収体との相互作用によって生成された二次粒子を検出する検出体からなる。吸収体とし て用いる物質によっては、それ自身が信号を発するもの (NaI,CsI 等の無機シンチレータ、 鉛ガラス等のチェレンコフ放射体)がある。これらは均質な構造のカロリメータを製作す ることが出来る。しかし、一般にこれらの物質は高価であり、大容量の吸収体を必要とす るハドロンカロリメータには用いられない。

一方、吸収体と検出体に異なる物質を用いて、それぞれを交互に重ねた構造を持つカロ リメータをサンプリング・カロリメータと呼び、入射粒子のエネルギーの一部を信号とし て検出する (図 2.1)。吸収体として用いる物質は鉄、鉛、ウラニウム等であり、検出体と してはプラスチック・シンチレータ等が用いられる。サンプリング方式では実験の目的に 合わせたカロリメータ構造のデザインが容易である。吸収体として高密度で原子番号の大 きな物質を選ぶことで、十分な吸収長を持ちコンパクトなカロリメータを製作することが 出来る。

図 2.1: サンプリングカロリメータの模式図

2.1.1 電磁カスケードシャワー

高エネルギーの電子・陽電子、光子が物質に入射した際、主として電子・陽電子は制動 輻射 (bremsstrahlung)により光子を生成し、光子は電子対生成 (pair creation)をなす。そ れらの過程を繰り返し電磁カスケードシャワーが生成される。電磁カスケードシャワーは 二次電子のエネルギーが臨界エネルギー E_c 以下になるまで成長する。E_c は制動輻射によ る損失とイオン化による損失が等しくなるエネルギーと定義されていて、近似的に、

$$E_c = \frac{800[\text{MeV}]}{Z + 1.2} \tag{2.1}$$

と表される。ここで Z は物質の原子番号である。

縦方向の電磁カスケードシャワーを記述する単位として輻射長 X_0 (radiation length)がある。 X_0 は電子が物質を通過する際の平均自由行程であり、次式で与えられる。

$$\frac{1}{X_0} = \frac{4\alpha N_A Z(Z+1) r_e^2 \log 183 Z^{-1/3}}{A}$$
(2.2)

ここで、 α は微細構造定数、 N_A はアボガドロ数、Zは原子番号、Aは原子質量数、 r_e はボーア半径である。 $1X_0$ は1つの高エネルギー電子が制動輻射によって持っていたエネルギーが 1/eになるまでの平均の距離として定義される。

また、横方向のシャワーの広がりは、物質の X_0 と、 E_c のエネルギーを持ったシャワー 粒子が $1X_0$ 相当物質を通過した時のそれた角度で決まる。一般に横方向のシャワーの広が りは下に示すモリエール半径 R_M (Moliére radius) で記述される。

$$R_M = \frac{21[\text{MeV}]}{E_c} X_0 \tag{2.3}$$

2.1.2 ハドロンカスケードシャワー

物質中に高エネルギーハドロンが入射すると、核子との非弾性衝突により各種の二次粒子 を生成する。そして生成された二次粒子がさらに相互作用を繰り返し、ハドロンカスケー ドシャワーが形成される。シャワー粒子の大部分は π[±]、 π⁰等の中間子や核子であり、こ れらの粒子は物質を通過する間にそれぞれ異なった過程を経てエネルギーを失う。

しかしながら、入射ハドロンの全エネルギーがカロリメータ内に留まるわけではなく、 測定にかからないエネルギーの存在がある。それがハドロンシャワーの特徴である。例え ば、中間子の崩壊によって生成されるニュートリノはカロリメータとは相互作用せずにエ ネルギーを外に持ち去り、 μ 粒子は一部しか測定にかからない。また、ハドロンシャワー によって作られる中性子も遮蔽が困難でその一部しか測定出来ない。加えて、核破砕反応 に用いられたエネルギーは文字通り吸収体に吸収されて、検出体で検出されない。更に、 例えば π^0 中間子は直ちに 2 つの γ 線に崩壊するため、それ以後は電磁シャワーを形成す ることになり、ハドロンシャワーの扱いを一層複雑なものにしている。 縦方向のシャワーは核子相互作用長 λ_I (nuclear interaction length)の単位で記述される。 λ_I は近似的に以下の式で表される。

$$\lambda_I \approx 35 \text{g cm}^{-2} \text{A}^{-1/3}$$
 (2.4)

ここで A は物質原子の質量数である。

2.2 補償のメカニズム

ー般にカロリメータから得られる信号は、電磁シャワーによるものに比べてハドロンシャ ワーによる信号の方が小さい。それは前述のように、ハドロンシャワーにおいては測定に かからないエネルギーが存在するためであり、それらの反応は事象ごとの揺らぎが大きく、 純粋なハドロンシャワーに対する分解能を低下させる原因でもある。また、シャワー中の π^0 中間子は電磁シャワーの形でカロリメータにエネルギーを与えるため、シャワー発達段 階での π^0 中間子生成のふらつきはシャワー全体のエネルギー測定に大きなふらつきを引 き起こす。従って、同じエネルギーの純粋ハドロンシャワーと電磁シャワーが同じエネル ギーをカロリメータに与えるようにしおけば、 π^0 中間子生成によるふらつきを抑えるこ とが出来る (図 2.2)。これが補償の基本的な考えであり、同じエネルギーの純粋ハドロン シャワーと電磁シャワーの応答の比 e/hが1であるものを補償型カロリメータと呼ぶ。 e/h = 1を実現するためには、以下のような方法が挙げられる。

- 1. 吸収材に鉛等の重元素を用いることで、電磁シャワー成分の応答を抑える。
- 2. 検出体に水素原子を多く含むプラスチックシンチレータ等を用いることで、中性子の 検出効率を高める。
- 吸収材の比率を増やし、電磁シャワーが検出体に与えるエネルギーを減らすようにする。しかし、電磁シャワーに対する分解能を悪化させないためにはサンプリング頻度を高くする必要がある。

2.3 カロリメータの分解能

エネルギー E の粒子がカロリメータに入射した際の、カロリメータのエネルギー分解能 は以下の式で表される。

$$\frac{\sigma}{E} = \frac{\sigma_{stochastic}}{\sqrt{E}} \oplus \sigma_{constant} \tag{2.5}$$

第一項 σ_{stochastic} はサンプリングカロリメータにおける吸収材でのエネルギー損失が、応 答に統計的なふらつきを与える事に起因する統計項である。統計項は次の式で表せる。

$$\sigma_{stochastic} = \sigma_{sample} \oplus \sigma_{photostat} \tag{2.6}$$

図 2.2: 純粋ハドロンシャワー成分と電磁成分の応答を示す模式図

第一項 σ_{sample} は前述の通りサンプリングカロリメータの構造に起因し、第二項 $\sigma_{photostat}$ はカロリメータの読み出し系に用いられた光電子増倍管 (PMT) の光電面から放出される 光電子数のばらつきに起因する項である。カロリメータ読み出しに用 PMT の全光電子数 を $N_{p.e.}$ とすると、 $N_{p.e.}$ は入射エネルギーに比例し、そのばらつきはポアソン分布のため $\sqrt{N_{p.e.}}$ となる。このとき相対誤差は以下のようになる。

$$\sigma_{photostat} = \frac{\Delta N_{p.e.}}{N_{p.e.}} = \frac{1}{\sqrt{N_{p.e.}}}$$
(2.7)

式 (2.6) の値 σ_{sample} は吸収体の厚み t に依存し、次のように表せる。

$$\sigma_{sample} = \sigma_{intrinsic} \oplus k\sqrt{E_c}\sqrt{t} \tag{2.8}$$

ここで E_c は臨界エネルギー、kは定数、 $\sigma_{intrinsic}$ はハドロンシャワーにおいて顕著である二次粒子生成のふらつきである。 $\sigma_{intrinsic}$ に関しては、tを変化させたエネルギー分解能の測定によって評価がなされている。

式 (2.5) の第二項 *σ_{constant}* はカロリメータの系統誤差による定数項であり、検出体の応 答非一様性、カロリメータからのシャワーの洩れ、キャリブレーション (第3、4章参照) に起因する。

第3章 KEKでのテスト実験

3.1 テストモジュールと実験環境

3.1.1 テスト モジュール

実験に用いたテストモジュールの構造は、鉛とシンチレーターを交互に、ビーム方向に 並べてカロリメータを構成する (図 3.1)。この実験でのサンプリング比は、鉛 8mm + ア クリル 2mm: プラスチックシンチレーター 2mm である。テストモジュールは、loop型 tile-fiber(図 3.2) と鉛からなるカロリメータ (HCAL)79 層 (3.7 λ_I)、その後方には同じサン プリング比で 1m×1mの大きさの straight-groov型 tile-fiber(図 3.3)を用いたカロリメー タ (backup-CAL)を 10 層 (0.5 λ_I)をレールに吊下げるかたちで設置した。シンチレータに は鍵型の溝が掘ってあり、そこにファイバーを通し信号を読み出す。溝に埋まるファイバー 部分には波長変換剤 (wavelength shifter, WLS) 入りの WLS ファイバー (KURARAY,Y11) を使用し、溝の外で光の減衰を小さくするためクリアファイバーに接続する。 HCAL は 1m×1mを5×5に分割するようにシンチレータがビーム軸と並行に 25本のタワー構造 をしている。また、HCAL は 20 層 (最下層は 19 層) ごとに区切り、それぞれセクション 1~4と名付ける。HCAL はセクション、タワーごとに 1本の光電子増倍管 (PMT) で読 み出し、backup-CAL は 5層ごとに 2本の PMT で両側から読み出した。応答の読み出し に使用した PMT は浜松ホトニクス製 H1949W である。

3.1.2 ビームライン

測定は高エネルギー加速器研究機構陽子シンクロトロン (KEK-PS)の $\pi 2$ ビームライン で行われた。ビームライン上には 3台のメイントリガー用シンチレーションカウンタ (T1、 T2、T3)、2台の電子識別用のガスチェレンコフカウンタ (C1、C2)、ビームの位置を知る ための 6 台のドリフトチェンバー (シングルワイヤーチェンバー 4 台、マルチワイヤーチェ ンバー 2 台)、 μ 粒子識別用のシンチレーションカウンタ (μ -counter)、またキャリブレー ションの際に μ 粒子 識別したタワーを同定するのに用いる μ -matrix(図 3.5)を配置した。 ビームライン上の測定器等の配置概略図を示す (図 3.4)。トリガー等に用いるシンチレー ションカウンタの大きさを以下に示す (表 3.1)。ビームは T3 の大きさ程度の広がりを持 つことになる。 チェレンコフカウンタはアルゴン-エタン (Ar-C₂H₆)使用のガスチェレン コフカウンタで、 e^- と他の粒子を識別出来るようにガス圧が調整されている。 μ -matrix は、HCAL の各チャンネルを読み出す PMT のキャリブレーションに用いる μ 粒子を識別 するために、HCAL の上流側と下流側にそれぞれ 10 本づつ格子を形作るように配置され た。各シンチレータの幅は 4cm、長さ 130cm、厚さ 5mm であり、上下流の信号から粒子 が通過したタワーを知る事が出来る。

図 3.1: 測定器全体図

図 3.2: loop 型 tile-fiber

図 3.3: straight-groove 型 tile-fiber

name	size
T1, T3	$40 \mathrm{mm} \times 40 \mathrm{mm}$
T2	$50 \mathrm{mm} \times 140 \mathrm{mm}$
μ -counter	$250 \mathrm{mm} \times 250 \mathrm{mm}$

表 3.1: シンチレーショントリガーカウンタの大きさ

図 3.4: ビームライン上のトリガー用測定器等の配置概略図

 \boxtimes 3.5: μ -matrix

3.1.3 測定項目及びオンライントリガー条件

テスト実験に先だって行われたタイルファイバーシンチレータのベンチテストの結果から、タワー境界付近ではカロリメータのレスポンスに変化がある事が分かっている。その 結果をも踏まえた上で、測定する項目を以下のように設定した。

- エネルギー分解能及び e/π 比の測定 (中心入射にたいするレスポンス)
- 入射位置変化によるレスポンスの変化
- タワー境界入射に対するレスポンス

本論文においては、中心入射に対するレスポンスについて解析を行い結果をまとめた。 使 用した粒子ビームは 1 ~ 4GeV の e^- 及び π^- ビームである。また、データを取るための トリガ条件を各トリガカウンタの組合せでつくる (表 3.2)。

粒子	トリガ条件
e^-	$T1 \times T2 \times T3 \times C1 \times C2$
π^{-}	$T1 \times T2 \times T3 \times \overline{C1} \times \overline{C2}$
μ^{-}	$T1 \times T2 \times T3 \times \overline{C1} \times \overline{C2} \times \mu$ -counter

表 3.2: 事象選別のためのオンライントリガ条件

3.2 測定結果

3.2.1 事象選択

 π トリガの入射ビームには電子、 μ 粒子が混在しているので、オフライン解析でさらに 粒子の選別を行う。各 cut 条件を以下に示す。T411 実験においての HIT の定義は、各々 のチャンネルの ADC 値が、そのチャンネルのペデスタル分布の平均値 mean と標準偏差 σ を用いて、

HIT:
$$(ADC) > mean + 5\sigma$$
 (3.1)

となる場合である。

● 共通の cut

1. トリガカウンタ (T1 ~T3) の信号が (図 3.6) に示す範囲。

- e^- cut
 - 1. チェレンコフカウンタに HIT がある。
 - 2. *μ* カウンタに HIT がない。
 - 3. backup-CAL に HIT がない。

• π^- cut

1. チェレンコフカウンタに HIT がない。
 2. μ カウンタに HIT がない。

• μ^- cut

- 1. チェレンコフカウンタに HIT がない。
- 2. *μ* カウンタに HIT がある。
- 3. backup-CAL に HIT がある。

全トリガ条件に共通なシンチレーショントリガカウンタの波高分布を (図 3.6) に示す。縦軸はイベント数、横軸は ADC 値である。それぞれの値が真である条件は ADC 値を単位として、150 < T1 < 280、140 < T2 < 390、135 < T3 < 280 である。また 2 台のチェレンコフカウンタによる 2 次元分布を (図 3.7) に示す。横軸・縦軸はそれぞれ C1・C2 の ADC値であり、それぞれの値が真である条件は ADC 値を単位として、C1 < 270、C2 < 270である。 μ 粒子識別には μ -counter によるカット (図 3.8)を用いた。カットの値は ADC 値を単位として、 μ -veto < 270である。

図 3.6: トリガカウンタによるカット

図 3.7: チェレンコフカウンタによるカット

図 3.8: μ-counter によるカット 20

3.2.2 キャリブレーション

カロリメータの応答は、PMT のゲインの違い、タイルファイバーシステムの個性のため 各チャンネルごとにばらつきがあるため、キャリブレーションを行う必要がある。キャリ ブレーションは運動量を 2GeV に設定したビーム中に含まれる µ 粒子に対する応答を用い て行った。µ 粒子の波高分布を (図 3.9) に示す。µ 粒子を MIP(minimum ionizing particle) と見なし、MIP 信号の ADC 分布を正規分布関数でフィットし、その平均値を1にするよ うな定数、すなわち平均値の逆数を求めた。MIP がカロリメータを貫通した事を判定する ための条件は以下の通り。

- HCAL 当該タワー4 チャンネル、backup-CAL 全チャンネルに HIT がある
- 各タワーに対応して、上下流それぞれの μ-matrix 2 本に HIT がある

 0.9 < (タワー 4 チャンネルの和) (HCA 全チャンネルの和) ≤ 1

図 3.9: *µ* 粒子の波高分布

3.3 解析結果

3.3.1 典型的な波高分布

ビームエネルギー 1GeV~4GeV の電子、 π 粒子の応答を (図 3.10)~(図 3.13) に示す。各 波高分布は正規分布関数でフィットした。結果を (表 3.3) に示す。1GeV π^- に関しては、 同ビーム中に含まれる μ 粒子が HCAL を貫通せず取り除けないため、以下の解析におい て、フィットには用いていない。

3.3.2 応答の線形性

 $1\sim 4 \text{ GeV}$ の e^- 、 π^- に対するエネルギー線形性を (図 3.14)に示す。横軸は入射ビーム 運動量である。上段図の縦軸は (図 3.10)~(図 3.13)に示す様に、応答を正規分布関数で フィットした時のピーク値であり、単位は [MIPs] である。この値は MIP が HCAL の 1 セ クションを通過した時に 1 となるように規格化してある。直線は原点を通る一次関数で フィットした結果である。下段図の縦軸は直線からの測定値のずれを測定値で割った値で ある。直線からのずれは最大で、eが 2.1%、 π が 1.2% であった。

図 3.14: エネルギー線形性

3.3.3 エネルギー分解能

1~4 GeVの *e*、πに対するエネルギー分解能の分布を (図 3.15)に示す。縦軸は正規分布 関数でフィットした際の標準偏差をピーク値で割ったものである。また、測定エネルギー の標準偏差は式 (2.5)のように表せるので、横軸は入射ビームの運動量の平方根の逆数に してある。式 (2.5)でフィットし、以下のような結果を得た。以下、誤差は統計誤差のみ を示す。

e に対するエネルギー分解能

$$\frac{\sigma_e}{E_e} = \frac{(22.7 \pm 0.4)\%}{\sqrt{E}} \oplus (3.6 \pm 0.9)\%$$
(3.2)

πに対するエネルギー分解能

$$\frac{\sigma_{\pi}}{E_{\pi}} = \frac{(42.4 \pm 1.8)\%}{\sqrt{E}} \oplus (11.6 \pm 2.2)\%$$
(3.3)

図 3.15: エネルギー分解能

3.3.4 e/π比

 $1\sim 4 \text{ GeV}$ での補償比 e/π の結果を (図 3.16) に示す。縦軸は eの応答を正規分布関数で フィットしたときのピーク値を、 π についてのそれで割ったものである。横軸は入射ビー ム運動量である。 $2\sim 4 \text{ GeV}$ での結果の平均は以下の通り。

$$e/\pi = 1.072 \pm 0.003 \tag{3.4}$$

図 3.16: e/π 比

Electron(provisoinal)	
-----------------------	--

BEAM $Energy(GeV)$	1	2	3	4
Mean(MIPs)	2.57 ± 0.01	5.24 ± 0.01	7.93 ± 0.05	10.54 ± 0.02
$\sigma/E(\%)$	23.1 ± 0.3	17.3 ± 0.2	13.9 ± 0.2	12.4 ± 0.1

Pion(provisoinal)

BEAM $Energy(GeV)$	1	2	3	4
Mean(MIPs)	2.56 ± 0.03	4.87 ± 0.04	7.14 ± 0.01	9.62 ± 0.07
$\sigma/E(\%)$	42.2 ± 0.5	33.0 ± 0.4	27.8 ± 0.3	24.1 ± 0.3

表 3.3: カロリメータの平均応答とエネルギー分解能

第4章 FNALでのテスト 実験

4.1 テストモジュールと実験環境

4.1.1 テストモジュール

この実験に用いたテストモジュールは、基本的に前述の T411 実験と同じものである。変 更点を以下に示す。

1. カロリメータの物質量を増やすため backup-CAL を全 45 層 $(2.25\lambda_I)$ に増設した。 2. 前置検出器として、Preshower, ShowerMAX counter を設置可能にした。

Preshower 測定器の構造は、鉛とシンチレーターを交互に並べたもので、サンプリング 比は、鉛 4mm : プラスチックシンチレーター 1mm であり、全 6 層 $(0.15\lambda_I)$ である。 Showermax 測定器の構造は、シンチレータストリップ $(200 \text{mm} \times 10 \text{mm} \times 5 \text{mm})$ を 20 本 並べ x 層、y 層を形成する (詳細は付録 A を参照のこと)。

4.1.2 ビームライン

測定は米国 Fermi 国立加速器研究所の陽子シンクロトロン (TEVATRON)の MT6ビー ムラインで行われた。ビームライン上には2台のメイントリガー用シンチレーションカウ ンタ (T4、T5)、鉄 (厚さ 5cm)が脱着可能で粒子識別等に用いるシンチレーションカウン タ (TPSD)、ビームの位置を知るための4台のシングルワイヤードリフトチェンバー、 μ 粒子識別用のシンチレーションカウンタ (μ -counter)を配置した。また SRD(Synchrotron Radiation Detector)は、電子が双極電磁石で曲げられた際に制動輻射により放出する光 子を検出し、粒子の同定をする検出器である。ビームライン上の測定器等の配置概略図を 示す (図 4.1)。トリガー等に用いるシンチレーションカウンタの大きさを以下に示す (表 4.1)。ビームは T5 の大きさ程度の広がりを持つことになる。

name	size
T5, T4	$40 \mathrm{mm} \times 40 \mathrm{mm}$
TPSD	$100 \mathrm{mm} \times 200 \mathrm{mm}$
μ -counter	$250 \mathrm{mm} \times 250 \mathrm{mm}$

表 4.1: シンチレーショントリガーカウンタの大きさ

ビームラインでは、ビームの上流でターゲットとなる物質を変えることにより電子又は π 粒子の割合が多くなるように調整している。それぞれ e-tune、π-tuneと呼ぶ。ただ、いず

図 4.1: ビームライン上のトリガー用測定器等の配置概略図

れの tune でもビーム粒子中には常に別の粒子が混じっている。e-tune ではビーム粒子中 90%以上が電子で残りが π 粒子と μ 粒子である。他方 π -tune ではビーム粒子中に電子、 μ 粒子がそれぞれ 10%程度混在しており、オフライン解析で粒子識別を行う必要がある (次 節参照)。 また、ビームラインパラメータによって設定した入射ビームの運動量と実際の 運動量には違いがあった。そのため入射ビームの正確な運動量を 4 つの SWDC と双極電 磁石の電流を使って求めた。上流、下流それぞれ 2 つずつの SWDC から粒子の通った軌 跡を求めその 2 本の直線の角度を求め、双極電磁石の磁場から運動量を求めた。実際の運 動量と設定した運動量の違いを (表 4.2)に示す。

nominal momentum	actual momentum (GeV/c)			
$({\rm GeV/c})$	e-tune		π -tune	
10	\mathbf{ps}	9.88		9.88
25	\mathbf{ps}	27.57	\mathbf{ps}	24.01
50	\mathbf{ps}	55.95	\mathbf{ps}	49.04
75	\mathbf{ps}	83.91	\mathbf{ps}	73.22
100	\mathbf{ps}	101.30	\mathbf{ps}	96.12
150		180.32		146.28
200		-		195.02

表 4.2: 入射ビームの運動量

T912 実験では上記のビームを用い、T411 実験の結果をも踏まえた上で、測定する項目 を以下のように設定した。表中で「ps」と記してある tune は、Preshower 測定器付きの測 定にも用いたビームである。本章においても引続き、Preshower 測定器が有る場合と無い 場合の中心入射粒子ついての測定及び解析結果をまとめた。

4.2 測定結果

4.2.1 事象選択

前述のように MT6 のビームには複数の粒子が混在する。T912 実験においてはチェレン コフカウンタがなかったため、粒子識別はオフラインの解析で行った。各々の cut 条件を 以下に示す。ここで、T912 実験での HIT の定義は、各々のチャンネルの ADC 値が、そ のチャンネルのペデスタル分布の平均値 mean と標準偏差 σ を用いて、

$$\text{HIT:} \quad (ADC) > mean + 3\sigma \tag{4.1}$$

となる場合である。

- ・ 共通の cut
 1. 粒子がトリガカウンタ (T4, T5) を MIP で通過。
 2. SWDC で1 粒子の軌跡である事を要求。
- e^- cut
 - 1. 粒子が TPSD(鉄無し) を MIP で通過。
 - 2. μ カウンタに HIT がない。
 - 3. $0.95 < [\text{HCAL}_{\text{tower13, section1}} (+ \text{Preshower})] / [\text{total energy }]$
- π^- cut
 - 1. 粒子が TPSD(鉄有り) を MIP で通過
 - 2. μ カウンタに HIT がない。
 - 3. HCAL 中心タワー (tower 13) の信号が 10MIP 以上。
 - 4. backup-CAL 最下層 (layer 10) に HIT がない。
- μ^- cut
 - 1. 粒子が TPSD を MIP で通過。
 - 2. *μ* カウンタに HIT がある。
 - 3. backup-CALを MIP で通過。
 - 4. 0.95 < [energy of tower]/[total energy of HCAL] < 1.00

e、 π 及び μ に共通なシンチレーショントリガカウンタの波高分布を (図 4.2)に示す。縦軸は イベント数、横軸は ADC 値である。それぞれの値が真である条件、即ち1粒子のみ通過し た条件は ADC 値を単位として、150 < T4 < 350、200 < T5 < 400、800 < TPSD < 1800 である。また同様に、 μ -counter の波高分布を (図 4.3)に示す。MIP が通過したとみなす 条件は ADC 値で、50 < μ -counter < 200 である。

図 4.2: トリガカウンタによるカット

図 4.3: µ-counter によるカット

4.2.2 キャリブレーション

HCAL、backup-CAL、Preshower 測定器および Showermax 測定器のキャリブレーショ ンは運動量を 50GeV に設定したビーム中に含まれる μ 粒子に対する応答を用いて行った (但し、Showermax 測定器キャリブレーションの詳細に関しては、付録 A.2を参照の事)。 μ 粒子を MIP(minimum ionazing particle) と見なし、MIP 信号の ADC 分布をランダウ 関数でフィットし、そのピーク値を 1 にするような係数、すなわちピーク値の逆数を求め た。特に HCAL 各チャンネルのキャリブレーションを行う際はカロリメータ本体を移動 させ、各タワー中心にビームを入射した。しかしながらカロリメータを乗せた架台の構造 上、水平方向の移動は平行移動ではなく円弧を描く。よって、タワー間で MIP の通過距 離に差が生じるため、それを補正する定数をかけてある。MIP がカロリメータを貫通した 事を判定するための条件は前述の通りである。MIP に対する HCAL の応答を (図 4.4) に 示す。

図 4.4: µ 粒子の波高分布

4.3 解析結果

4.3.1 典型的な波高分布

カロリメータで測定される全エネルギーを得る際、各セクションの応答を足し合わせる が、シンチレータの厚み等を考慮して定数を掛ける。

$$E_{total} = E_{HCAL} + \alpha E_{backup} + \beta E_{Preshower} \tag{4.2}$$

HCAL の応答の係数を 1 として、 α 、 β (Preshower 有りの場合)を最適化する。 π 粒子、 101GeV 電子の各エネルギーでの波高分布を (図 4.6)~(図 4.12) に示す。それら波高分布 を正規分布関数でフィットした結果を (表 4.3) に示す。

また、Preshower の応答と HCAL の応答の相関を (図 4.5) に示す。横軸が Preshower の 応答で、縦軸が HCAL の応答である。電子は Preshower でシャワーを発達させ多くのエ ネルギーを Preshower に落とすので、図上部の負のような相関をなす。

図 4.5: Preshower と HCAL の相関

図 4.6: e、 π の応答 (200GeV tune)

図 4.8: e、πの応答 (100GeV tune)

図 4.7: e、 π の応答 (150GeV tune)

図 4.12: e、 π の応答 (10GeV tune)

図 4.11: e、 π の応答 (25GeV tune)

4.3.2 応答の線形性

10~200 GeV の e、 π に対するエネルギー線形性を (図 4.13; Preshower 無し)、(図 4.14; Preshower 有り)に示す。横軸は入射ビーム運動量である。上段図の縦軸は応答を正規分布 関数でフィットした時のピーク値であり、単位は [MIPs] である。この値は MIP が HCAL の 1 セクションを通過した時に 1 となるように規格化してある。直線は原点を通る一次関 数でフィットした結果である。下段図の縦軸は直線からの測定値のずれを測定値で割った 値である。直線からのずれは最大で、

Preshower 有り: e^- が 7.5%、 π^- が 2.5% であった。

図 4.13: エネルギー線形性

図 4.14: Pershower 付きエネルギー線形性

4.3.3 エネルギー分解能

10~200 GeV でe、 π に対するエネルギー分解能の分布を (図 4.15; Preshower 無し)、(図 4.16; Preshower 有り)に示す。縦軸は正規分布関数でフィットした際の標準偏差をピーク 値で割ったものである。また、測定エネルギーの標準偏差は式 (2.6) のように表せるので、 横軸は入射ビームの運動量の平方根の逆数にしてある。式 (2.6) でフィットし、以下のよ うな結果を得た。

eに対するエネルギー分解能 (Preshower 有り)

$$\frac{\sigma_e}{E_e} = \frac{(28.7 \pm 0.1)\%}{\sqrt{E}} \oplus (0.9 \pm 0.6)\%$$
(4.3)

 π に対するエネルギー分解能 (Preshower 有り)

$$\frac{\sigma_{\pi}}{E_{\pi}} = \frac{(42.4 \pm 0.5)\%}{\sqrt{E}} \oplus (1.5 \pm 0.7)\%$$
(4.4)

eに対するエネルギー分解能 (Preshower 無し)

$$\frac{\sigma_e}{E_e} = \frac{(26.8 \pm 0.3)\%}{\sqrt{E}} \oplus (1.7 \pm 0.3)\%$$
(4.5)

 π に対するエネルギー分解能 (Preshower 無し)

$$\frac{\sigma_{\pi}}{E_{\pi}} = \frac{(47.1 \pm 0.5)\%}{\sqrt{E}} \oplus (0.5 \pm 0.4)\%$$
(4.6)

図 4.15: エネルギー分解能

図 4.16: Pershower 付きエネルギー分解能

4.3.4 e/π 比

10~200 GeV での補償比 e/π の結果を (図 4.17; Preshower 無し)、(図 4.18; Preshower 有り)に示す。今回の実験では e と π の測定に用いた BEAM の運動量がそれぞれ異なる ので。よって、 π に関してはその応答を正規分布関数でフィットしたときのピーク値を、e に関してはその線形性を表す 1 次関数に π 運動量を代入した値を使用した。縦軸はそうし て得られた eの値を、 π についてのそれで割ったものである。横軸は入射ビーム運動量で ある。

Preshower 有り

$$e/\pi = 1.002 \pm 0.004 \tag{4.7}$$

Preshower 無し

$$e/\pi = 0.985 \pm 0.005 \tag{4.8}$$

を得た。

図 4.17: e/π 比

図 4.18: Pershower 付き e/π 比

electron								
momentum	mean (MIPs)		$\sigma/E(\%)$					
(GeV/c)		preshower		preshower				
9.88	$28.9 {\pm} 0.04$	$31.0 {\pm} 0.05$	$8.58 {\pm} 0.27$	$9.02 {\pm} 0.33$				
27.57	$85.2 {\pm} 0.1$	$74.1 {\pm} 0.1$	$5.56{\pm}0.31$	$5.79 {\pm} 0.17$				
55.95	$170.7 {\pm} 0.3$	$152.8 {\pm} 0.2$	$4.02 {\pm} 0.30$	$6.01 {\pm} 0.33$				
83.91	257.2 ± 0.3	$252.3 {\pm} 0.2$	$3.30{\pm}0.18$	$3.28 {\pm} 0.17$				
101.30	$310.0 {\pm} 0.3$	$307.5 {\pm} 0.3$	2.63 ± 0.15	$2.56 {\pm} 0.21$				
180.32	$561.5 {\pm} 0.6$	-	$2.24{\pm}0.23$	-				

pion								
momentum	mean (MIPs)		$\sigma/E(\%)$					
$({\rm GeV/c})$		preshower		preshower				
9.88	$29.0 {\pm} 0.1$	-	$14.8 {\pm} 0.8$	-				
24.01	$73.8 {\pm} 0.1$	$73.8 {\pm} 0.058$	$8.57 {\pm} 0.17$	$8.54 \pm \ 0.19$				
49.04	$150.9 {\pm} 0.1$	144.0 ± 0.084	$5.77{\pm}0.08$	$6.44 {\pm} 0.11$				
73.22	226.1 ± 0.1	$218.9 {\pm} 0.091$	$4.66 {\pm} 0.07$	$4.81 {\pm} 0.07$				
96.12	$300.3 {\pm} 0.1$	$294.6 {\pm} 0.13$	$4.02 {\pm} 0.07$	$4.10 {\pm} 0.08$				
146.28	456.7 ± 0.2	-	3.14 ± 0.07	-				
195.02	604.7 ± 0.3	-	2.62 ± 0.09	-				

表 4.3: カロリメータの平均応答とエネルギー分解能

第5章 結論

次世代の線形加速器である JLC 計画に用いられるカロリメータのテストモジュールとして、タワー構造を持つタイルファイバー型ハドロンカロリメータを製作し、2度にわたってテスト実験を行い、以下のような結果を得た。

エネルギー線形性 2GeVから 200GeVのデータを一次関数でフィットした (図 5.1)。

- 電子
 - fitting function:

 $y = (3.06 \pm 0.03)x - (0.66 \pm 0.09)$

- deviation: 最大で 9.2% (1GeV)
- π 粒子
 - fitting function:

$$y = (3.12 \pm 0.01)x - (1.57 \pm 0.18)$$

- deviation: 最大で 6.5% (2GeV)

エネルギー分解能 2GeVから 200GeVのデータを式 (2.6) でフィットした (図 5.2)。

• 電子:

$$\frac{\sigma_e}{E_e} = \frac{(23.4 \pm 0.2)\%}{\sqrt{E}} \oplus (1.8 \pm 0.3)\%$$

π 粒子:

$$\frac{\sigma_{\pi}}{E_{\pi}} = \frac{(47.7 \pm 0.7)\%}{\sqrt{E}} \oplus (0.6 \pm 0.1)\%$$

 e/π 比

低エネルギーではエネルギー依存性が見られるので、10GeVから 200GeV の平均を求めた (図 5.3)。

$$0.985 \pm 0.005$$

これらの結果から、JLC の目標値は十分実現可能であると言える。

図 5.1: 両実験を通じてのエネルギー線形性

図 5.2: 両実験を通じてのエネルギー分解能

図 5.3: 両実験を通じての e/π比

謝辞

本研究を進めるにあたり、細やかなる御指導を頂きました、武田廣教授、野崎光昭教授、 川越清以助教授に心から感謝申し上げます。また実験等を行う上で多くの助言をくださっ た、高エネルギー加速器研究機構 藤井芳昭助手、神前純一助手、筑波大学 金信弘教授、信 州大学 竹下徹助教授、甲南大学 梶野文義教授を始め、JLC カロリメータグループの方々 に御礼申し上げます。

本論文執筆にあたり、根気強く叱咤激励して下さった石井恒次氏並びに諸先輩方、並び に貴重な時間を快く割いて私の質問等に答えてくれて、心の支えであった同回生の皆に感 謝致します。 最後に、共に一連の実験・解析に勤しんだ魚住聖氏、大田辰郎氏、杉本佳 之氏、中川敦子氏、古川啓太郎氏に謝意を伝えます。不慣れな環境において皆の存在は大 変心強いものでありました。

付 録 A Preshower 及び Showermax 測 定器の開発

FNAL でのテスト実験に向けて、Preshower 及び Showermax 測定器の開発を行った。 FNAL のビームラインではチェレンコフカウンタを使用出来ないため粒子識別が困難で あり、粒子識別の為の測定器の一つとして必要であった。。特に Showermax 測定器は粒 子の通過位置が測定可能であるのでビームの広がり、位置を知る手がかりとなる。加えて チェンバー等の作動確認にも用いることが出来る。また、JLC カロリメータの実機製作に 向けての、EM-CAL の R&D を行う必要もある。以上のような要請から Preshower 及び Showermax 測定器を製作した。その製作過程を以下にまとめる。

A.1 Preshower 測定器

A.1.1 Preshower 測定器の構造

Preshower 測定器の構造は、鉛とシンチレーターを交互に並べたもので、サンプリング 比は、鉛 4mm : プラスチックシンチレーター 1mm であり、全 6 層 $(0.15\lambda_I)$ である。プ ラスチックシンチレーターの大きさは 20cm×20cm であり、6 本の WLS を通して読み出 す (図 A.1)。使用する PMT は浜松ホトニクス製 H7195 である。

A.1.2 シンチレーターの光量測定

Preshower 測定器は HCAL 同様ファイバーをシンチレータに埋め込む構造になっている。 この様な構造では、シンチレータの発光量は粒子の通過した場所に依存することが、HCAL のタイルファイバーシステムの製作過程でも明らかに成っている。今回新たに Preshower 測定器を製作するにあたり、その光量のばらつきが HCAL のタイルファイバーシステム 等と同程度であり、その後の使用に際して支障がない事を確認する必要があった。

光量測定のセットアップを (図 A.2) に示す。β線源として ⁹⁰Sr を用いた。シンチレータ 光を WLS で波長変換し、クリアファイバーを経由し左右 2 本の PMT で読み出す。典型的 な波高分布を (図 A.3) に示す。波高分布をランダウ関数でフィットし、そのピークをもっ て発光量とした。

測定は、シンチレータ上のファイバーで区切られる7地点で行った。(図 A.4)に各地点 の発光量を示す。ファイバー間での光量のばらつきは数%程度であった。

⊠ A.1: Preshower

図 A.2: セットアップ

A.2 Showermax 測定器

A.2.1 Showermax 測定器の構造

Showermax 測定器の構造は、シンチレータストリップを 20 本並べ x 層、y 層を形成する。要するに 200mm × 200mm の領域を 400 分割し、シャワーの広がりを見るものである。シンチレータストリップの大きさは、長さ 200mm、幅 10mm、厚さ 5mm である (図 A.5)。

 \boxtimes A.5: Showermax

A.2.2 シンチレーターの光量測定

Showermax 測定器の主要な役割は粒子の通過情報を得ることであり、MIP 信号を判別出 来る事が重要である。そのため、Showermax 用シンチレータには十分な光量が要求され る。光量はシンチレータの厚さ、表面から溝までの深さ、溝の径などに依存する。要求され る光量を得るために、構造的に問題が無いかを調べる必要があった。また、各シンチレー タの発光量のばらつきを見た。

光量測定のセットアップを (図 A.4) に示す。 β 線源として ⁹⁰Sr を用いた。シンチレータ 光を WLS で波長変換し読み出す。典型的な波高分布を (図 A.7) に示す。

まず SPP(single photoelectron peak) 値を測定し、発光量を見積もった。Showermax 用 シンチレータの発光量は 7 光電子数程度であり、要求される光量を満たすものである。ま た、シンチレータ毎での光量のばらつきは 10%程度であった (図 A.8)。

図 A.6: セットアップ

図 A.7: 波高分布

A.2.3 T912 実験での Showermax 測定器キャリブレーション

通常のトリガビームは ShowerMAX 測定器の各シンチレータより広がっているため (4~5 strips)、各シンチレータごとのヒット数が少ない。また、ペデスタルの幅が広いチャンネルが多く、加えてチャンネル間のクロストークの影響もあり、通常のトリガでは MIP の ピークとペデスタルを分離することは困難であった。よって、ShowerMAX 測定器の各チャンネルは以下の手順でキャリブレーションした。

1. イベント毎で、最大の ADC 値であるもの粒子が通過したシンチレータと見なす。

2. その ADC 値をヒストグラムに詰める。

3. 正規分布関数でフィットする。

μ粒子トリガーの場合と、上記過程による応答の比較を (図 A.9) に示す。

図 A.9: ShowerMAX 測定器の µ 粒子に対する波高分布

関連図書

- [1] JLC Group, KEK Report 92-16 (1992).
- [2] 梶川良一 平成 5 年度科学研究費補助金 (総合研究 A) 研究成果報告書 リニアコライダーの物理 (1994).
- [3] 小林富雄 平成 8 年度科学研究費補助金 (基盤研究 A) 研究成果報告書 電子陽電子リニアコライダー実験における測定器の開発研究 (1997).
- [4] T.Suzuki, et al., Nucl. Instr. and Meth. A 432(1999) 48-65.
- [5] K.Ishii, et al., Nucl. Instr. and Meth. A 385(1997) 215.
- [6] S.Kim(CDF Collaboration), Nucl. Instr. and Meth. A 360(1995) 206.
- [7] T.Hara, et al., Nucl. Instr. and Meth. A 365(1995) 370-377.