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Abstract

This thesis presents an improvement of estimation method of the systematic
uncertainties about the charge asymmetry in top quark pair production at /s =
13TeV with the ATLAS detector. The data set corresponds to an integrated
luminosity of 79.7fb~!, recorded in 2015, 2016 and 2017. The measurement fo-
cuses on dilepton channels (ee, eu, pp). The data are unfolded to parton level
at full phase space using a fully Bayesian unfolding method. The bayesian tech-
nique “marginalization” is used to deal with nuisance parameters affecting this
measurement. By the technique, the systematic uncertainties have succeeded to
reduce much smaller than the result at the /s = 8 TeV. The differential measure-
ments are performed as a function of the invariant mass, transverse momentum
and longitudinal boost of the tf system.
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Chapter 1

Introduction

The particle physics has been developed in theories and experiments. This leds to
the establishment of the Standard Model (SM) of the particle physics from 1970s.
In the SM, the material in the universe consists of fermions. The fermions are com-
posed of quarks and leptons of three generations, where each generation consists
of two types of quarks and leptons. The interactions between elemental particles
are mediated by vector bosons, which are formulated in a frame of the gauge the-
ory. Three types of interactions, electromagnetic, strong and weak interactions
are distinguished in the SM. The gauge bosons associated with the interactions
are photons (electromagnetic), gluons (strong) and W or Z bosons (weak). The
discovery of the Higgs boson is reported in July 2012. The Brout-Englert-Higgs
mechanism [1],[2], which is the topic of the 2013 Nobel Prize in Physics, explains
where the masses of elementary particles come from.

Despite its splendid success, the SM still cannot explain key concepts in our un-
derstanding of the universe; the exist of dark matter, the mass of the neutrino
and the lack of antimatter in our universe. There are thousands of Beyond Stand-
ard Model (BSM) theories that make an effort to unite our current understanding
of the universe with new ideas. For example, the axigluons [3] are predicted to
be massive in BSM theories. Axigluons may be discovered when interactions are
studied at higher energy. In these years, searches for BSM have been performed
actively in various experiments.

The large mass of the top quark (m; ~ 173 GeV) suggests that the top quark may
be connected to heavy particles in some BSM models as well as couples strongly
with the Higgs in the SM. Top quark decays into a W boson and a b quark almost
without exception. Top quark has a very short lifetime (74 ~ 107?°s) and decays
before hadronization. This allows an experimental test of the properties of a bare
quark. Therefore, precise measurements of the top quark properties are very in-
teresting.

The top-pair production cross section at the Large Hadron Collider (LHC) [4] can
collect the world’s largest number of events; ~ 6 x 107 tf events in case of top-pair



production cross section (o(pp — tt) ~ 820pb) in an integrated luminosity of
79.7 fb~! at /s = 13TeV. The production of tf pairs at LHC in proton—proton
collisions is symmetric under charge conjugation at leading order (LO) in quantum
chromodynamics (QCD). There are the LO Feynman diagrams for the t¢ produc-
tion via gluon-gluon fusion process (~ 90%, dominant process at LHC) and ¢gq
annihilation process (~ 10%).
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Figure 1.1: Feynman diagrams for initial-state radiation (ISR) (a), final-state
radiation (FSR) (b), Born (¢) and Box (d)

At next-to-leading order (NLO) in QCD, an asymmetry arises from interference
between different Feynman diagrams with the ¢g annihilation process [5].
The charge asymmetry, A%, is defined as the following formula, by using Aly| =

ly(@)] = ly@),

N(Aly| > 0) ~ N(Aly| < 0) "
N(Aly| > 0) + N(Aly| < 0) '

here y(t) and y(t) are reconstructed rapidities of the top and antitop quark.
N(Aly] > 0) and N(Aly| < 0) represent the number of events with positive
and negative Aly|, respectively. The interference between initial-state radiation
(ISR) (Fig. 1.1(a)) and final-state radiation (FSR) (Fig. 1.1(b)) diagrams leads to
a negative asymmetry value. The interference between the Born (Fig. 1.1(c)) and

tt
A =

Box (one-loop) (Fig. 1.1(d)) diagram of the g7 — tt¢ leads to a positive asymmetry
value. The measured charge asymmetry, A% value in an integrated luminosity of
20.3fb~! at /s = 8TeV in the LHC was A% = 0.021 & 0.016 [6]. The meas-

2



urements at /s = 8 TeV are compatible the inclusive ¢¢ with the SM prediction
(A% = 0.0111 + 0.0004 [7]).

At proton—antiproton collider, the ¢t production rate difference is often referred
to as forward-backward asymmetry. The asymmetry defines as the proton direc-
tion, “forward” and the antiproton direction, “backward”. The forward-backward
asymmetry has the same underlying physical effects of the charge asymmetry. The
forward-backward asymmetry in ¢ production at the Tevatron (proton—antiproton
collision at /s = 1.96 TeV) by the CDF experiment was measured 0.12840.025 [8].

In this analysis, the t¢ charge asymmetry, Atg, is measured with an integrated
luminosity of 79.7 fb~! at LHC /s = 13 TeV run. The measurement focuses on
dilepton channels (ee, ey, and up) of tt — WFTbW b — [Tv;bl~ b process. The
dilepton channels have some unique advantages. There are very few background
events and it looks clean signature. Quark charge can be determined by charge of
leptons from W decays. However, branching ratio of dilepton channels is smallest
(6%) among all top decay channels. Owing to higher center-of-mass energy at
LHC /s = 13 TeV run, large number of events can be obtained with higher cross
section and higher luminosity compared to measurements at /s = 8 TeV.
However, two neutrinos are produced and escape undetected in dilepton channels.
It is not easy to measure the top and antitop quark in dilepton channels. The
neutrino weighting method (NW method) [9] is adopted to reconstruct momenta
of top and antitop quarks by searching most probable directions of escaped neut-
rinos. In the measurement at /s = 8TeV, these momenta were reconstructed
using the likelihood in multivariate variable. In NW method, these momenta can
be decided with fewer unknown variables.

At the last stage of analysis, it is mandatory to know the bare Aly| distribution
in order that experiment results are compared to theoretical expectation. The
observed Aly| distribution needs to be corrected by using the technique named
“unfolding”. The reason is because the observed Aly| distribution is distorted due
to detector resolution and acceptance effects. The response matrix can be calcu-
lated by comparing reconstruction-level A|y| distribution with MC truth-level one.
In particular for the differential measurement, a difference of reconstruction-level
and MC truth-level A|y| distribution may become large for each bin in the response
matrix. The response matrix has the uncertainties related to detector resolution
acceptance effects and theoretical models. For example, the uncertainties about tf
MC generator modeling (matrix element, parton shower and radiation) are large.
These are called as the systematic uncertainties in this analysis. In this measure-
ment, a method called marginalization in Fully Bayesian Unfolding [10] based on
bayesian statistics is used to surpress the systematic uncertainties. The marginal-
ization means making the effects of nuisance parameter which are unknown values
affecting systematic uncertainties are unimportant and powerless in an unfair way.



To decide to be agreement in the gaussian prior and posterior probability dens-
ity fitted MC data for each nuisance parameters, it is used the unfolding based
on bayesian statistics. Total systematic uncertainties are surpressed by lowering
differences between prior and posterior probability density. By this method, the
systematic uncertainties can be reduced to about one-half successfully and smaller
than the statistical errors.

In this thesis, the A¢ is measured differentially as a function of the invariant
mass m, transverese momentum pr, and velocity 3, of the tf system, as well as
inclusive measurements. Owing to higher center-of-mass energy at LHC /s =
13 TeV run, more sensitive measurements at the higher mass region of tf system,
where the sensitivity in BSM models expected to be enhanced, can be carried out
compared to /s = 8 TeV measurements. The charge asymmetry can be enhanced
due to tt production via the exchange of new heavy particles in BSM theories.
At low p¥, the asymmetry is dominated by the positive contribution from Born
and one-loop amplitude interference. At high ptT{, the interference of ISR and FSR
amplitudes causes a negative asymmetry. Thus, the measurements as a function
of pi probes different sources of asymmetry. At high 8%, the quark in a proton is
boosted and the fraction of the ¢t production via ¢g annihilation is larger and the
asymmetry is enhanced in a model independent way. The value of the tf charge
asymmetry can be observed larger in higher Bf region.

The structure of this thesis is the following. In Chapter 2, the theories about
the tt pair production at LHC are discussed. In Chapter 3, the experimental setup
with the ATLAS detector are discussed. In Chapter 4, it is shown in the collected
data sample and simulation samples. In Chapter 5, the definition for the phys-
ics objects used in this analysis are discussed. Chapter 6 summarizes selection
criteria, background estimation and the reconstruction of physics objects used in
this analysis. In Chapter 7, the unfolding method to calculate bare Aly| distri-
bution from the reconstruction-level Aly| distribution is discussed. Estimation of
systematic uncertainties are discussed in Chapter 8. The sensitivities of ¢t charge
asymmetry in inclusive and differential measurements and disscussion about the
measured ¢t charge asymmetry are presented in Chapter 9. Last Chapter gives the
conclusion of this thesis.



Chapter 2
Top-pair physics

This chapter provides the theories necessary to motivate the study in the thesis.
The Standard Model (SM) physics related to the top quark and the ¢ production
mechanism are discussed. The concepts of t¢ charge asymmetry in SM and BSM
physics are described in section 2.3 and 2.4.

2.1 Standard Model

In the SM physics, there are two types of elementary particles. One of them is
called fermions which obeys the Fermi-Dirac statistics, while the other is called
bosons obeying the Bose-Einstein statistics. In the SM, there are three types
of particles: spin-1/2 quarks and leptons (fermions) that consist matters in the
universe, gauge bosons with the spin-1 mediating the interaction acting between
particles and the spin-0 Higgs boson feeding their masses. These SM particles are
summarized in in Fig. 2.1. Within the SM, the top quark is the third generation
up-type quark.

Higgs Boson ‘

electron muon tau Z boson

neutrino neutrino neutrino

\_election ) \__muon J \__tau__J 9" J

Leptons
Gauge Bosons

Figure 2.1: The elementary particles of the Standard Model (SM). [11]

The top quark was discovered by the CDF and D@ experiments in 1995 at the
Tevatron (proton-antiproton collider), with a center-of-mass energy /s = 1.8 TeV



at Fermilab [12], [13]. Since then its properties (mass, couplings, production cross-
section, charge asymmetry, etc.) have been studied extensively during Tevatron’s
runs (2002-11). Among them, The top quark mass, m; (~ 173 GeV) especially is
a key parameter in the SM. The top quark couples strongly with the Higgs sector
because of its large mass.

Furthermore, because of its enormous mass, the top quark life-time (7; ~ 107%°s)
is shorter than the hadronization time-scale (O(1072*s)) and thus it provides
a unique opportunity to study the bare quark. From constraint of the CKM
(Cabibbo-Kobayashi-Maskawa) matrix [14], [15], the branching fraction of ¢t — bW
is predicted to be almost 100% by the SM. Top quark is the only quark heavy
enough to decay into a real (on-shell) W boson. The W boson decays into a charged
lepton and a neutrino with a branching fraction of ~11% for each flavour of leptons.
The W boson also decays into a pair of quarks with a branching fraction of ~67%.
The experimental signature is a jet containing a bottom hadron (“b-jet”) and the
W boson decay products. By how the W boson decays, top decays are classified.
The decay branching ratio of possible combinations in the final state of the top
pair production are shown in Fig. 2.2. For example, the diagram of two leptons
decay channel (dilepton channels) of ¢¢ is shown in Fig. 2.3. There are two high
transverse momentum charged leptons, a large missing transverse energy from two
neutrinos and two b-quark jets in this final state.

Top Pair Branching Fractions

"alljets” 46%

ttjets 15%
1%

o 2%

¥e ?\Iglo

i 0,

\)‘*\1\3\'6 20»,\%Io Ltjets 15%

) er e+jets 15% .
"dileptons" "lepton+jets”

Figure 2.2: ¢t decay channels and branch ratio

2.2 ¢t production cross section

Top (top-antitop) pair (¢f) production are produced through the strong interaction,
while single top quark production occurs via the electroweak interaction. Top
quarks are produced through two kinds of processes at the leading-order (LO),
namely quark-antiquark annihilation (¢g — tf) and gluon-gluon fusion (gg — tt).
The diagrams for tf production in the LO via ¢g and gluon-gluon fusion are shown



proton

proton

Figure 2.3: Diagram of dilepton channel (eu channel)

in Fig. 2.4. In the proton-proton collider (LHC) at /s = 13 TeV, The t¢ pairs are
produced through gluon fusion (~90%) and quark-antiquark annihilation (~10%).
Since the LHC is a proton-proton collider, the anti-quarks are sea quarks. In
contrast to the proton-antiproton collider (Tevatron), gluon-gluon fusion is the
dominant process.

q t

(a) quark-antiquark annihilation

g

|

(b) gluon-gluon fusion

Figure 2.4: Feynman diagrams for the top quark production via ¢g annihilation
(a), and gluon-gluon fusion processes (b).

The process of high energy proton-proton collisions at LHC is rather complex,
involving both soft QCD processes and hard processes. A diagrammatic structure
of a generic hard scattering process in proton-proton collision is shown in Fig. 2.5.
The type of partons a and b (quarks or gluons) participate the hard interaction
a+ b — X. To predict the rates of the various processes a set of universal parton
distribution functions (PDFs) is required. The calculation at the LHC requires
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Figure 2.5: Diagrammatic structure of a generic hard scattering process.

further theoretical treatments because the proton is a composite particle. The
cross section of ¢t production can be precisely calculated by including the next-
to-leading order (NLO) and the next-to-next-to-leading order (NNLO) diagrams.
The cross section calculation for collisions between proton type a and b can be
written as follows,

OAB = /dandl“bfa/A(%,M%)fb/B(be,M%*) X Gab—sx ([LR) (2.1)

where the distribution of their parton momentum fraction in the proton, x,,x;
are given by the PDF f(z,pu%). The factorization scale, ur efines the boundary
of energy scale treated as the hard process and the process inclusively contained
in the PDF. ug is the renormalization scale for the QCD running coupling. The
latest result of the total cross section of ¢ production is shown in Fig. 2.6, as a
function of collision energies for hadron collider experiments.

2.3 tt charge asymmetry in the SM

In this thesis, the ¢ charge asymmetry is measured in dilepton channels (ee, ey,
and pp). Since this section, as for the charge asymmetry, it is mentioned about
the theoretical explanation [5]. In the SM, as shown in chapter 1, QCD predicts
an asymmetry for ¢t produced via ¢q initial state at the NLO (O(a3); as: QCD
coupling constant). The asymmetry has its origin in two different reactions: radi-
ative corrections to ¢¢ annihilation process (Fig. 2.7) and heavy flavor production
involving interference terms of different amplitudes contributing to gluon-quark
scattering (qg — ttq) (Fig. 2.8) a reaction intrinsically of O(a3).
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Figure 2.6: Summary of LHC and Tevatron measurements of the top-pair pro-

duction cross-section as a function of the centre-of-mass energy compared to the
NNLO QCD calculation

q [ q {
g

g g

(a) ISR (b) FSR

VA
q R pou e S

(c) Born (d) Box

Figure 2.7: Diagrams for initial-state radiation (ISR) (a), final-state radiation
(FSR) (b), Born (c) and Box (d)

In both q7 — tt and qg — tiq, the asymmetry can be traced to the interference
between amplitudes which are relatively odd under the exchange of t and ¢. In
detail, the charge asymmetry can be understood in analogy to the corresponding
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Figure 2.8: Diagrams of the charge asymmetry in production of heavy quarks
through flavor excitation (qg — ttq)

one in quantum electrodynamics (QED) reactions and is proportional to the color
factor d?,.. The Box diagram amplitude is ultraviolet finite and the asymmetric
contribution to the cross section of O(a?) is therefore not affected by renormaliza-
tion, an obvious consequence of the symmetry of the LO process. In the qg — tiq
process, it is absent in the charge asymmetric piece. However, real and virtual
radiation (Fig. 2.7), if considered separately, exhibit infrared divergences, which
compensate in the sum, corresponding to the inclusive production cross section.
It leads to a sizeable tf charge asymmetry which is dominated by ¢ — tf, and
furthermore, can be scrutinized by studying ¢ production at fixed longitudinal
momenta and at various partonic energies 5. At proton-proton collisions at high
energies, the tt charge asymmetry has to reconstruct the ¢t restframe and select
kinematic regions, which are dominated by ¢¢ annihilation or flavor excitation
qg — ttq. In this case, the flavor excitation has much smaller asymmetric ef-
fects than gg annihilation because the proton-proton initial state is symmetric.
As mentioned in chapter.1, the dominant contribution to the charge asymmetry
originates from ¢g annihilation, namely from the asymmetric part in the inter-
ference between the Born amplitude for qg — ¢t and the Box corrections to this
reaction, which must be combined with the interference term between ISR and
FSR. The corresponding contribution to the rate is conveniently expressed by the
absorptive contributions (cuts) of the diagrams showned in Fig. 2.9. However,
only Fig. 2.9(a) plus the crossed Fig. 2.9(b) are relevant for the charge asymmetric
part. Fig. 2.9(c), Fig. 2.9(d) and Fig. 2.9(e), on the other hand lead to a symmetric
contribution only.

This can be seen as follows: the color factors corresponding to Fig. 2.9(a) and
2.9(b) (after averaging over initial and summing over final states) respectively are

10
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Figure 2.9: Cut diagrams for qq — tt

given by these color coefficients

1 AT AP A AT AC N 1
O — (222 N () 2L 2 g2
NZ T(zzz) T(zzz) 16Ng<abc+ abe):

1 AP\ AP e\ 1
=T _ T — ) 2
C N T(222> T<222> 16Ng( Jabe - une)

(2.2)

where the number of color charge (red, blue, green) No = 3, the Dirac operator
eigenvalues A%, A\, \°, the structure constant f%_ = 24 and the color factor d?,, =

40/3. Without color factors the contributions to the cross section from Fig. 2.9(a)
and 2.9(b) are related by

doy(t,t) = —doy(t,1), (2.3)

which holds true both for two and three particle cuts. Therefore, the asymmetric

2

obe term.

part originates from the color factor d
Its form is equivalent to the corresponding QED process with the replacement of

the quark charges and QED coupling by the color factor

2 3
16Ng dabcaS' (24)
On the other hand, The production cross section is obtained from the correspond-
ing QED process through the replacement

3 33
aoepWy,Q; —

11



1
c
here the operator constant Tr = 1/2 and Cr = (NZ — 1)/2N% = 4/3. Thus, the
QCD asymmetry is also caluculated from the QED results by the replacement
d(21bc o

16N IO ° ~ 12

To obtain finally the asymmetric part of the inclusive cross section for qg — tt or

OzQEDQth — ag. (26)

qg — ttq the integral over the real gluon spectrum is performed numerically [5].

2.4 it charge asymmetry in the BSM theories

In this section, it is mentioned about an example of the charge asymmetry in ¢t
production via the exchange of new heavy particles in BSM theories [16]. One
generalization of QCD proposed some time ago is chiral color models [17] in which
the color gauge group arises from the spontaneous breaking of a larger group at
higher energy. This gives rise to a massive color octet of gauge bosons, axigluons,
which couples to quarks with a pure axial-vector structure and the same strength
as QCD. Chiral color models require also the existence of extra fermions to cancel
anomalies, and extra Higgs bosons to break the enlarged gauge symmetry.

The Feynman diagrams for the leading contributions in the partonic process qq —
ttg are shown in Fig. 2.10. The thin curly outgoing lines represent the QCD gluon

q t q t q g% t
9,G q ¢ -
g ga ga 't :
49 da . A
q 7 q q 9
(@) (b) ©

Figure 2.10: Feynman diagrams contributing to the partonic process q7 — ttg.
Thin curly lines denote SM gluons while thick curly lines denote either a SM
gluon (g) or an axigluon (G). Axial-vector couplings of quarks to axigluons are
indicated by ¢% and axial-vector couplings of top quarks to axigluons by ¢%. Two
more Feynman diagrams with the gluon attached to ¢ instead of ¢ (¢ instead of ¢
in (b)) are not shown.

while the thick curly lines can stand for either a QCD gluon or an axigluon. In

the most general scenario a color-octet resonance G* interacts with quarks with
arbitrary vector gi} and axial-vector g% strength relative to the strong coupling gs
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L = gst"q(gy + 94vs)7" Ghai. (2.7)

where the covariant chirality operator 75 and the gamma matrices v*. In explicit
models, parity, gauge invariance or orthonormality of field profiles prevent a direct
coupling of G* to an even number gluons; therefore it is natural to assume that
the extra gauge boson do not modify gluon-gluon fusion.

The Born cross-section for ¢¢ annihilation into top quarks in the presence of a
color-octet vector resonance reads [18]

— = _
dcost 5 N¢ 25

25(5 — m2

1+ +4m? + — 8(5 _ mG)2 .
~2
3

(65— mZ)2 + mil% [((g%)? + (¢%)%)

X((g0)2(1 + & +4m?) + (¢%)* (1 + ¢ — 4m?)) + 8g¥. g%, gt glsc]}
(2.8)

d qq—tt TwC'
?  rCr 10 { l9v-9v (1 + ¢ + 4m?)

+2¢% g4c] +

where @ is the polar angle of the top quark with respect to the incoming quark
in the centre of mass rest frame, § is partonic energies, Tp = 1/2, No = 3 and
Cr = 4/3 are colour factors, § = /1 — 4m? is the velocity of the top quark, with
m = my/V/3, and ¢ = Beosf The parameters gt gi,, g%, ¢y represent, respectively,
the vector and axial-vector couplings of the excited gluons to the light quarks (top
quarks). Colour-octet vector resonances are naturally broad: I'¢/mg = O(ag).
The terms in above equation that are odd in ¢ generate the charge asymmetry.
Due to the factor (8§ —m2) the charge asymmetry generated in flavour universal
models, g% = ¢%, is in general negative. A positive asymmetry can be generated
if g%¢% < 0 or if the last term 8¢{ ¢% g} ¢',c dominates over the interference [19].
Therefore, both ¢% ¢, and gf.¢% gt ¢*, are negative and the interference term induces
a positive asymmetry while the new physics term induces a negative asymmetry
below the resonance.

In fact, various extensions of the SM predict significant enhancement of charge
asymmetry value at the previous measurement. For examples, there are strongly
constrained various BSM models — W', axigluon (G),), doublet (¢), color-triplet
(w?) and color-sextet scalar (21). The comparison of these models with the
SM predictions, charge asymmetry measurements at the LHC (8 TeV) and for-
ward—backward asymmetry at the Tevatron (1.96 TeV) are provided in Fig. 2.11
and 2.12. Each point of clouds in these figures corresponds to a choice of the
new particle’s mass between 100 GeV and 10 TeV and of the couplings to SM
particles. By good precise measuring the top quark properties, it can evaluate for
new particles of some BSM models.

13
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Figure 2.11: Predictions from BSM models for charge asymmetry measurement
at the LHC and for forward-backward asymmetry at the Tevatron. The hori-
zontal band represents charge asymmetry value gained from combination of AT-
LAS and CMS measurements. On the x-axis the forward-backward asymmetry
values gained from DO and CDF experiment are shown [20].
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Figure 2.12: Predictions from a number of extensions of the SM, for the for-
ward—backward asymmetry integrated over my; at the Tevatron (on the x-axis in
both plots) and two high-mass charge asymmetry measurements at the LHC. The
y-axis in both figures represents the measurement for (a) my > 0.75 TeV and for
(b) myz > 1.3 TeV. The SM predictions of both the forward-backward asymmetry
at the Tevatron and the charge asymmetry at the LHC are also shown [21].
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The 13 TeV measurement must achieve higher precision to set an equally strin-
gent limit as the 8 TeV result. The first boosted charge asymmetry measurement,
indicated with a red band in Fig. 2.13(a). Differential measurements are expected
to improve considerably in Run-2 and drive the constraints on four-fermion op-
erators C'_. The resulting individual 95% C.L. limits are shown in Fig. 2.13(b).
In Fig. 2.13(b), the expected uncertainty on C'_ from the 13 TeV inclusive charge
asymmetry measurement with an presion of 0.5% is larger than 8 TeV measure-
ments with a similar precision. As considered highly boosted top quark pair pro-
duction with m > 1.2 TeV, if a charge asymmetry is measured in 0.5% precision,
an extremely tight constraint on four-fermion interactions can be derived.

~0.5 : o S I —
(@) —— 95%CLC.=C,-C, ---validity
LHC13 m, > 1.2 TeV, 8A, = 05%
LHC13,5A, = 0.5% J——
LHC8 ATLAS m_ > 0.75 TeV —
LHC8 CMS PR e S
LHCBATLAS —
Tevatron CDF
Alli 1) T, Tevatron DO e
5-0.4-0.3-0.2-01 10.20. 4 0. Lo b b b b b b Lo b L
5-0.4-0.3-0.2-0.1 0 0.10.20.30.4 05 12 1 -08 06 04 02 0 02 04 06
61 T =C. v?/A?
(a) (b)

Figure 2.13: The 95% C.L. limits on the linear combination of four-fermion oper-
ators C_ = Cy — C, extracted from charge asymmetry measurements at hadron
colliders. The entries labelled as LHC13 present the prospects of a charge asym-
metry measurement with an uncertainty of 0.5% and a central value in exact
agreement with the SM prediction [22].
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Chapter 3

The Large Hadron Collider and
the ATLAS detector

This study was performed using the data collected by the ATLAS experiment at
the LHC. In this chapter, it is mentioned about ATLAS detector focusing on the
relevant points for this study.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the world’s largest proton-proton collider con-
structed at European Organization for Nuclear Research (CERN), where bunches
of protons are accelerated to 7TeV and collide head-on at center-of-mass energy at
14 TeV in its design. The four detector cites (ATLAS, CMS, ALICE and LHCb)
built on the accelerator ring. ATLAS and CMS are general purpose detectors de-
signed to study a various range of physics programs, while LHCb and ALICE are
specialized in studying b-hadrons and heavy-ion collisions respectively.

The acceleration of protons with various steps: Protons are firstly seeded from
hydrogen gas, by blowing the electrons off the hydrogen atoms using electric field.
They are injected in the linear accelerator LINAC2 accelerated upto 50 MeV,
and sent to the Proton Synchrotron Booster (PSB) with being accelerated up
to an energy of 1.4 GeV. The subsequent accelerator is the Proton Synchrotron
(PS) elevating the energy of the protons to 25 GeV, and injecting them into the
SuperProton Synchrotron (SPS). After being accelerated to 450 GeV in SPS, the
protons finally enter the two LHC pipes running the beam oppositely each other.
The whole acceleration chain is shown in Fig. 3.1.

The LHC accelrator consists of octant-shaped 2.45km arcs with 1232 super-
conducting magnets located at the curves, providing 8.33 T of magnetic field to
bend the proton trajectory. In total, bunch-trains can be filled simultaneously
at the sign condition, and 2808 bunches per beam are brought to collision in the
LHC. Each bunch contains about 10! protons. The beam bunches are collided
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Figure 3.1: The LHC and associated booster accelerator system [23].

with a crossing angle of 285 mrad. Due to the high frequency of collisions and the
dense proton bunches, multiple proton collisions can take place within the same
bunch crossing, referred as “pile-up”. The average pile-up pu, defined as the mean
number of interactions per bunch crossing, has been evolved according to the peak
luminosity increase.

3.2 The ATLAS detector

ATLAS (A Toroidal LHC ApparatuS) is a general purpose detector, aiming to a
wide range of physics programs from precision measurements to the energy fron-
tier experiments, through a dedicated measurement of particles produced in the
pp collisions. The detector extends over 44 m in width and 25m in height weigh-
ing 7000 tons in total, covering the interaction point (IP) by a cylindrical barrel
and two endcaps, achieving a nearly full solid angle coverage. The cut-away im-
age is shown in Fig. 3.2. From center to the outside, it consists of an inner
tracking detector surrounded by a superconducting solenoid magnet creating a
2T axial magnetic field, electromagnetic and hadronic calorimeter and a muon
spectrometer. The particle detection in the sub-detectors is shown in Fig. 3.3
The inner tracking detector covers the pseudorapidity range || < 2.5. The inner
track detector consists of silicon pixel, silicon micro-strip and transition radiation
tracking detectors, and serves for reconstructing the trajectories of the charged
particles produced in the proton-proton interactions with high precision and ef-
ficiency. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic
(EM) energy measurements with high granularity and longitudinal segmentation.
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Figure 3.3: A schematic view of particle detection in the ATLAS detector [25].
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A hadronic calorimeter covers the central pseudorapidity range (|| < 1.7). The
endcap and forward regions are instrumented with LAr calorimeters for both EM
and hadronic energy measurements up to || = 4.9. The muon spectrometer is loc-
ated outside of the calorimeter systems. It includes a system of precision tracking
chambers and detectors with sufficient timing resolution for triggering events.

3.2.1 Coordinate system

ATLAS used right-handed Cartesian coordinate system with its origin at the nom-
inal interaction point. The corresponding cylindrical coordinate system is shown
in Fig. 3.4. The beam axis is defined as z-axis. Transverse to the beam direction

n= —ln{tan(g)}

Figure 3.4: The ATLAS coordinate system.

is the x-y plane. The z-axis points from the interaction point to the center of
the LHC ring, and y-axis points upwards. In spherical coordinate, the polar angle
from the z-axis is # and azimuthal angle around the z-axis is ¢. The nominal
interaction point is at the center of the detector. The pseudorapidity 7 is defined
as:

n=—In (tan%) (3.1)

The pseudorapidity is generally used at the hadron colliders since the distribution
of number of particles as a function of 7 is basically at. And the distance AR of
the two objects in 7-¢ space is defined as:

AR = /(An)? + (Ag)? (3.2)
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3.2.2 Magnet

The ATLAS magnet system consists of a thin superconducting solenoid and three
large superconducting toroids as shown in Fig. 3.5.

end-cap
toroids

barrel
toroids

end-cap
toroids

solenoid
Figure 3.5: A schematic of the ATLAS magnet system with a central solenoid and
three toroidals (1 barrel+ 2 endcap) [26].

e Solenoid Magnet
The solenoid is aligned on the beam axis and has a 2T axial magnetic field
for the inner detector. This bends charged particles to ¢ direction for the
measurement, of pr. It is installed in between the inner detector and the
calorimeter with a length of 5.3 m and a radius of 1.2m.

e Toroidal Magnet
The toroidal magnet system is constituted by a barrel toroid and two endcap
toroids. The barrel toroid provides 0.5T magnetic field in ¢ direction for
barrel region (|| < 1.05) with a length of 25.3m, an inner core of 9.4m
and an outer diameter of 20.1m. There is a complicated magnetic field
from the overlap between the barrel and endcap toroids in the n range of
1.4 < |n|] < 1.6 as shown in Fig. 3.6.

3.2.3 Inner Detector

The role of ATLAS Inner Detector (ID) is to reconstruct charged particle tracks,
to measure pr and charge of the tracks. The ID is immersed in a 2T solenoid
field. As shown in Fig. 3.7, it covers the pseudorapidity range || < 2.5. It con-
sists of three independent layers; Pixel detector (with Insertable B-layer), Silicon
micostrip Tracker (SCT) and Transition Radiation Tracker (TRT). The arrange-
ment of the inner detector and outer tracking detector is shown in Fig. 3.8.
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Figure 3.6: Simulated magnetic field integral provided by a single troid octant [27].

the n range of 1.4 < |n| < 1.6 is called transition region

3512.0
ID end-plate .
_ Cryostat
Solenoid coil n=1.0 =15
/ .
o L
= PPF1
R1150. — : —
R1066. s4s.0 PPB1 // /'/// 2710.0
_ ' = R1004.0 L~ n=2.0
3 > o
z TRT (ehdfc: -
> A hdfca o
g TRT (barrel) | (e P | Cryostat
g foiofifiz| 1 |2 |3 | a /57 617 | 8| pess.o .
© e e
L R560.0 e =2.5
= e ﬂ [L/'//// Pixel mi
I—tendcap) A TR support tube
7 Ui
L ~F275.0

.0

S

H Beam-pipe
R=28.05
lioo.s |560.0 bao.0 |saa0 | 12098 | 1774 2115.2 2505.0  2720.2
331.5 495.0 650.0  853.8 10915 1399.7 z(mm)
<
N
>
% - Envelopes
e 7
/ — ;
P - Pixel 31<R<242 (mm)
/ -
/ 7 —
e - o SCT barrel 255<R<549 (mm)
PJ7X 1 g P 149.6
R122.5 = == — Jm Jﬂ»/’ —— SCT end-cap 251<R<610 (mm)
R88.5 s = === S e R88.8
s = i
R50.5 e — e
: R33.5 — — TRT barrel 554<R<1082 (mm)
- [ 1 [
| 400 ! 580.0 | TRT end-cap 617<R<1106 (mm)
331.5 5. 650.0

|
|
|
|

Figure 3.7: Schematic view of the r — z cross section of the ATLAS inner detector

for Run-2 [28].
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Figure 3.8: Schematic view of the inner detectors [27].

Pixel detector

In the inner radius, pixel detectors that determine collision points and vertices
have high position resolution of 10 um for r-¢ direction and 115 um for z direction
as shown in Fig. 3.9. The pixel size is 50 x 400 ym? and 50 x 600 um? and there

Figure 3.9: The pixel detector, showing individual barrel and endcap modules [27].

are a total of ~80 M readout channels. The innermost layer in the barrel provides
the highest precision referred as the “insertable b-layer” (IBL) installed during
the long shutdown between Run-1 and Run-2. The IBL is located close to the
interaction point (33.25 mm from the beam) in order to improve the tracking per-
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formance. The definition of transverse and longitudinal track parameters is shown
in Fig. 3.10. The dy is the transverse impact parameter (the closest approach of
the track to the beam axis), and oy, is its resolution. The zy is the longitudinal
impact parameter with respect to the primary vertex, and 6 is the polar angle. The
transverse impact parameter (dp) resolution improved with the IBL, in particular
in the low pr region [29].
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Figure 3.10: The definition of transverse and longitudinal track parameters.
Silicon micostrip Tracker (SCT)

The SCT is located outside of the pixel detector. It provides high-resolution pat-
tern recognition (17 um for r-phi direction and 580 um for z direction). As shown
in Fig. 3.11, each module consists of two back to back sensors of small angle stereo
layout (20 mrad), and the array of modules are mounted in four coaxial cylinders
in the barrel and nine disk layers in each endcap. The modules cover total of 63 m?
of the surface and provide hermetic coverage with precision space-point measure-
ments.

Figure 3.11: The module attached to the SCT scylinders in the barrel region [27].
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Transition Radiation Tracker (TRT)

Outside of the SCT is the transition radiation tracker consisting of multi-layers
of gaseous straw tube (polymide) elements. There are 73 layers of straws in the
barrel and 160 layers in the endcap. The tube diameter is 4mm and the wall
thickness is minimal (35 pm). It is filled with xenon based gas (Xe : COg : Oy =
70 : 27 : 3) to detect X-ray photons of transition radiation from electrons as well
as ionization by charged particles. The intrinsic position resolution per straw is
about 130 pum.

Combined tracking in the inner detector

The combination of precision pixel measurements at short distances followed by
a large number of TRT hits extending over a far greater distance allows for ro-
bust pattern recognition. The combined tracking performance has been validated
via the measurement of cosmic muons [24]. The momentum resolution typically
achieved with the inner detector is:

% = 1.6% @ 0.053%(GeV ) x pr (3-3)
T

3.2.4 Calorimeter

The ATLAS calorimeters (Fig. 3.12) are installed at outside of the inner tracker.
The purpose of the calorimeters is to measure the energy and position of the
electron, photon and hadrons. One is electromagnetic part that stops electronic
magnetic showering and the other is hadronic part that stops hadrons by strong
interaction. It consists of electromagnetic calorimeter (ECAL) system that stops
electronic magnetic showering and a hadronic calorimeter system that stops had-
rons by strong interaction, the sensitive region of which is |n| < 4.9.

Electromagnetic calorimeter (ECAL)

The liquid argon (LAr) sampling calorimeter with Pb plate absorber of accor-
dion shape as shown in Fig. 3.13. This geometry provides a complete ¢ coverage
without azimuthal cracks. Each sampling cell point towards the interaction point
over the n-coverage. The ECAL is divided into a barrel part (|n| < 1.475) and two
endcaps parts (1.375 < || < 3.2). The system measure energy and position of
the particles that have electromagnetic interaction. Total thickness of the module
is at least 22 radiation length (Xy) at n = 0. The main part of the calorimeter
is segmented in 1 X ¢ granularity of 0.025 x 0.025. The energy resolution of the
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Figure 3.12: A schematic view of the calorimetry system [30].
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barrel region measured by the test beam [31] is

OR 10%
9B _ 0 50.7%. 3.4
E E(GeV) GO (3:4)

In fact, the energy resolution in the electrons and photons obtained using LHC
Run-2 data collected in 2015 and 2016 are given as follows [32]: for electrons with
the energy of 10 GeV the typical resolution is 0.3% to 0.8% and it varies between
0.25% and 1% for photons with the energy around 60 GeV.

Hadronic calorimeter (HC)

The hadronic calorimeters cover the range |n| < 4.9 through different techniques
for widely varying requirements and radiation environment over the large n range.
The hadronic calorimeter is designed to measure the energy of hadrons, such as
protons, neutrons and pions. The hadronic calorimeter consists of the barrel iron
scintillating-tile calorimeter (Tile) HC covering |n| < 1.7 and endcap LAr HC cov-
ering 1.5 < |n| < 3.2. Barrel Tile HC is segmented into three sections, the central
barrel section (|n| < 1.0) and the two extended barrel sections (1.0 < |n| < 1.7),
using different channel dimensions. The approximate 9.7 interaction length ()
of active calorimeter in the barrel and 10\ or more in the endcap, is adequate
to provide a good resolution for high energy jets. A module in the Tile HC is
shown in Fig. 3.14. Together with the large n coverage, a good measurement of

Photomultiplier

Wavelength-shifting fibre

Scintillator Steel

Figure 3.14: Sketch of a Tile HC module [27].
the missing transverse energy (ER) can be performed. The intrinsic resolution
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of barrel Tile HC and endcap LAr HC for an individual hadron jet are given as
follows:

== 33%, Tile HC 3.5
E~ JEGe) ( ) (35)
o _ 100K 0y, (Endcap LAr HC) (3.6)

E  /E(GeV)

In fact, the pr-dependent jet energy resolution obtained using LHC Run-2 data
collected during 2015 to 2017 is given as follows [33]: For jets with transverse mo-
menta of 45 GeV that fall in the central calorimeter region (|n| < 1.8), the relative
jet energy resolution is measured to be 16.24+2.8%.

Forward calorimeter

A set of LAr calorimeter layers are arranged in a very forward region close to
the beam axis covering 3.1 < |n| < 4.9. It is designed to capture the full content
of jets or particles from hard scattering particles from extremely boosted center-
of-mass. Forward calorimeter (FCAL) is made by three sampling layers in which
both functions of EM calorimeter and hadronic calorimeter are integrated. The
first layer is with copper absorber working as EM calorimeter, and the later two
layers are with tungsten functioning as EM calorimeter. The overlap region with
respect to the endcap HC is deliberated to realize smooth transition.

3.2.5 Muon Spectrometer

Muon spectrometers are located outermost in the ATLAS, consisting of four sub-
detectors; Monitored Drift Tube (MDT); Cathode Strip Chamber (CSC); Resist-
ive Plate Chamber (RPC); and the Thin-Gap Chamber (TGC). The former two
are dedicated to precision measurement of muon tracks and the latter two are to
triggering. Its role is to measure a muon momentum in the pseudorapidity range
In| < 2.7 and generate trigger on muons in the |n| < 2.4 region. The muon spectro-
meters can identify muons with momenta above 3 GeV and precise determination
of pr up to about 1TeV with 10% momentum resolution. In particular, the rel-
ative momentum resolutions with the muon spectrometers in the barrel and the
endcap regions [34] are:

0.25(TeV
pr _ & ®3.27% @ 0.168(TeV™') x pr (Barrel) (3.7)

pbr pr
‘;ﬂ = 3.79% @ 0.196(TeV™") x pr (Endcap)  (3.8)
T

The cross-sections in the plane containing the beam axis is shown in Fig. 3.15. In
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the barrel region, three cylindrical layers around the beam axis to measure tracks
are installed. In the transition and endcap regions, three layers of the chambers
are placed perpendicular to the beam axis.

m
o
-

[ TwlTef sT ool

Figure 3.15: The schematic view of the cross-section of the muon system [27].
Infinite momentum muons would propagate along straight trajectories which are
shown by the dashed lines and typically traverse three muon stations.

Monitor Drift Tubes (MDT)

MDT is a gaseous drift chamber filled with the basic detection elements of 30 mm
diameter aluminum tubes that are covered by a 400 pum thick wall. Drifting elec-
trons are absorbed by a 50 um diameter tungsten-Rhenium wire in the center of
a tube with a bias voltage of 3080V is applied, and read out by a low-impedance
current sensitive preamplifier. The gas mixture is with Ar (93%) and CO, (7%),
maintaining the maximum drift time of 700 ns. The position resolution by a single
wire is about 80 um. It is the precision momentum measurement chamber covering
the pseudorapidity range of |n| < 2.7. It consists of multi-layers of almuminum
tubes with the structure shown in Fig. 3.16. The limitation in the n-coverage is
determined by its maximum durable rate (150 cm™'s™!).

Cathode Strip Chamber (CSC)

For high particle fluxes and track density in the forward region of the pseudorapid-
ity of 2.0 < |n| < 2.7, a multiwire proportional chamber CSC is used for the
innermost tracking layer since it has higher rate capability and time resolution
(7ns). It is operated with a gas mixture of Ar (80%) and COy (20%) and with
a bias voltage of 1900V applied. The CSC can stand high rate operation up to
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Figure 3.16: The mechanical structure of a MDT chamber [27].

1000 Hz/cm? while the limit of the safe operation of the MDT is about 150 Hz/cm?.
The posistion resolution of the CSC is 40 um in r-direction.

Resistiv Plate Chamber (RPC)

RPC is digital gaseous detectors specialized in fast timing response for trigger-
ing. RPC is placed in the barrel region of the pseudorapidity |n| < 1.05 as shown
in Fig. 3.15. The elementary detection unit is a gas gap filled with non-flammable
gas mixture (94.7%: CoHsFy, 5%: Iso-C4Hyg, 0.3%: SFg). An uniform high electric
field (~4900V/mm) is applied so that the ionized electrons amplitude by them-
selves via the avalanches. Signals are read out by a metal strip attached on both
ends of the gaps, arranged with a pitch of 30 mm ~ 39.5mm. The typical spatial
and timing resolution achieved by a RPC chamber are 1 cm and 2 ns respectively.

Thin Gap Chamber (TGC)

TGC covers the pseudorapidity range of 1.05 < |n| < 2.7. It is multiwire pro-
portional chamber, shown in Fig. 3.17. A quick drain of secondary electrons is
achieved by the quenching gas mixture of COs (55%) and n-CsH;2 (n-pentane)
(45%), yielding the timing response of 5 ns. In order to get good time resolution,
wire-to-cathode distance of 1.4 mm is smaller than the wire-to-wire distance of 1.8
mm. TGC has good granularity for muon pr discrimination for trigger.
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Figure 3.17: TGC structure in the plane orthogonal to the wires. There are anode
wires, graphite cathodes, G-10 layers and a pick-up strip [27].

3.3 Trigger and data acquisition system (TDAQ)

The ATLAS Trigger and Data Acquisition System (TDAQ) [27] is designed to
effectively collect as various interesting events as possible using two trigger levels,
Level-1 (L1) and High Level Trigger (HLT). The first level hardware-based L1
trigger uses a subset of the detector information to reduce the rate of accepted
events to a design maximum of 100 kHz. This is followed by a software-based HL'T
system performed on a computer farm with a maximum average accepted event
rate of about 1kHz. The schematic of the readout streams are shown in Fig. 3.18.

Level-1 (L1) Trigger

The hardware based L1 trigger selects events from 40 MHz to 100 kHz by signals
from the calorimeters and muon detectors. The signals are processed by dedic-
ated hardware to meet the requirement of the maximum latency of 2.5 us. The L1
consists of two independent sub-trigger systems (Fig. 3.18); L1 Calo identifying
the EM or hadronic clusters in calorimeter and reconstruct primitive jets, elec-
trons, photons and taus (L1 objects) with calibrated energy in EM scale; L1 Muon
identifying and measuring the tracks in the muon spectrometer designed to accept
events with muons. The object reconstruction is based on the coarsely segmented
blocks of combined detector channel called “trigger tower” with 1 x ¢ granularity
of 0.1 x 0.1. Missing transverse momentum £ is also calculated at the L1 stage
by the vectoral sum of the calorimeter deposits, referred as L1XE. Trigger accept is
issued by the Central Trigger Processors (CTP) when the L1 objects meet certain
criteria in terms of pr threshold and number of objects. The information about
the geometric position of trigger objects is retained in the calorimeter and muon

30



trigger processor until the trigger decision is made. This information is called as
Region-of-Interest (Rol), and sent to the HLT when the L1 trigger is accepted.
To suppress pile-up effects by auto-correlation filters and pedestal correction, the
preprocessor of calorimeters were replaced to FPGA from ASIC for Run-2. A
new topological trigger processor (L1Topo) system enables the L1 trigger to add
object’s kinematics from hardware base information. The muon endcap trigger
requires the coincidence with hits from the innermost muon chamber to suppress
most of the fake muon triggers [35].

Calorimeter detectors

TileCal| Muon detectors

Detector
Level-1 Calo | 44 Level-1 Muon | Read-Out
Preprocessor Endcapl Barrel .
sector logic | | sector logic
CP (e,y,1) | | JEP (jet, E)
[cmx ] MUCTPI =
g
""""""""""" i DataFlow
‘ g
T 4 cTP 3 Read-Out System (ROS)
CTPCORE
> [ CTPOUT }
|contraitigger | L
Level-1 (%)
e
""""""""""""""" o Data Collection Network
Rol Fast TracKer +——
(FTK) —_—

High Level Trigger
(HL

Data Storage

Accept

Processors O(28k) II

Tier-0

Figure 3.18: The schematic of ATLAS trigger system in Run-2 [35]. Trigger detect-
ors have separated readout line for trigger, sending input information for trigger
decision to CTP. The CTP reconstructs L1 objects and issue a global accept signal
relieving the buffered data, once the trigger criteria are satisfied.

High Level Trigger (HLT)

The software based HLT selects and records events from output of the L1 trig-
ger to 1 kHz. HLT uses software to discard non-interesting events by refining the
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reconstruction of physics objects, such as electron, muon, and jet, found in the
angular Rol identified by the L1 trigger. A seed is constructed for each trigger
accepted by L1, which consists of a pp threshold and an 7n-¢ position. This is
performed by a set of custom farmwares with a processing time of 0.2s on an
average. The final accepted event rate is reduced to ~1.5kHz. In this thesis, the
event is required to pass the lepton trigger, as shown in Sec. 6.1. More details are
mentioned in the reference [36].

3.4 Luminosity measurement

Luminosity determination is particular important since it gives the reference of
normalizing simulated dataset which enables the comparison to data. The in-
stantaneous luminosity is calculated as the formula below:

r_ g fo

g

, (3.9)

where ny is the number of colliding bunches and f, is the frequency of the beam
circulation. o is total fiducial cross-section of proton-proton interaction including
both elastic and inelastic scattering, and p is the average number of such interac-
tion per bunch crossing. While ¢ is provided by a dedicated calibration (Van der
Meer scan [37]) measuring the lateral beam profile using overlapping two beams,
(1t is obtained directly by exploiting the rate information from luminosity detectors
located in the very forward region nearby the beam pipe. Dedicated calibration and
luminosity determination algorithm studied in the reference [38]. Two luminosity
detectors mainly contribute to the luminosity measurement: LUminosity measure-
ments using Cerenkov Integrating Detector (LUCID) and Absolute Luminosity For
ATLAS (ALFA). LUCIDs are located at the both ends of the ATLAS detector at
a distance of 17m from the IP, covering the pseudorapidity range 5.6 < |n| < 6.0.
The LUCID detector consists of 16 aluminum tubes filled with C4H;o gas filled
inside, designed to count the Cherenkov photons kicked out by charged particles
flying along the beam axis which are mainly generated by proton-proton inelastic
scattering in the IP. ALFA is located beyond the ATLAS envelope at z = £240m,
sandwiching the beam pipe from top and bottom. The detectors are composed of
8 scintillating fibers, designed to measure the elastic scattering component of the
proton-proton interaction. The luminosity has been measured with a precision of
2.1~2.4% for the data acquired in 2015-2017.
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Chapter 4

Data and simulated samples

This chapter explains about the data and simulated samples. The data were
collected by the ATLAS detector as described in Chapter 3. The simulated samples
using Monte Carlo (MC) method are also described, which are used to predict the
signal and background productions.

4.1 Data sample

The analysis uses the complete dataset collected in 2015, 2016 and 2017 at /s =
13 TeV with the ATLAS detector, with total integrated luminosity of 79.7 fb~!
after requirement on good reconstructed physics objects. The uncertainty in the
combined 2015-2017 integrated luminosity is 2.0%. It is derived, following a meth-
odology similar to that detailed in the reference [39], from calibrations of the
luminosity scale using x-y beam separation scans performed in August 2015, May
2016 and July 2017. Due to large inelastic cross-section of proton-proton interac-
tion and high luminosity of LHC, a large number of pp interactions, mostly ‘soft’
interactions, occur in each bunch crossing called pile-up. Number of pp interac-
tions per crossing depends on the total instantaneous machine luminosity L and
the number of colliding bunches per beam Ny Mean number of interactions
< p > is provided by:

L X oy,
Nbuneh X fruC
where oy, is the total inelastic proton-proton cross-sections (80 mb), and fruc is
the bunch revolution frequency in LHC (about 11 kHz). Effects of pile-up on event
reconstruction arise for example from overlapping calorimeter clusters (called “in-

< p>= (4.1)

time pile-up”). On the other hand, influence of detector signals from previous
bunch crossings can affect the signal of a triggered event (called “out-of-time pile-
up”). Pile-up events are implemented in the Monte Carlo (MC) simulation. (see
detail in Sec. 4.2)
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4.2 Simulated sample

Number of physics processes related to this thesis are simulated using generators,
which simulates the final state particles of given physics processes according to cer-
tain theoretical models. It uses MC technique in generating events. MC simulation
is a highly powerful toolkit providing theoretical prediction on event kinematics
as well as the detector response, which is used extensively from studying signal
and background separation, performance evaluation to background estimation. In
theoretical calculations, the models of hard collisions use perturbative QCD cal-
culation at a finite order of the QCD coupling constant aig, which is called Matrix
Element (ME) part. The generated a few partons subsequently are fragmented into
more number of partons by Parton Shower (PS) algorithm. The many partons are
finally hadronized into many hadrons using phenomenological models. The gen-
eral structure of a simulated event is shown in Fig. 4.1. These events subsequently

Decay {

Hadronization

Parton |
Shower Minimum Bias
+ . .
Collisions
Hard -
SubProcess
fi x,Oz f xqoz
Parton ( Y ( )

Distributions

Figure 4.1: The schematic of a showering and hadronization generator event [40].

undergo the detector simulation with the GEANT4 package [41], which are used
to estimate the systematic uncertainty of the signal modelling. GEANT4 is a
toolkit to simulate how particles interact in a matter. This is used to describe
the ATLAS detector components and material distributions and simulate energy
deposits in the detectors. Pile-up is implemented by overlaying a certain number
of simulated ‘soft’ (minimum bias) events on the ‘hard’ event. The number of
pile-up events are distributed according to the expected luminosity profile of the
data sample. The difference of < p > distribution in the MC sample and the real
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data is taken into account by reweighting the MC events.
The generators used in this thesis are described as below.
Pythia

An event generator tool for the high-energy collisions whose process starts from
hard process in the initial states, then generate multiple interactions of partons,
beam remnants, string fragmentation and particle decays. The showering model is
expected to match the theoretical description of QCD showers at the Leading Or-
der (LO). It is used the difference between POWHEG and AMC@NLO for Matrix
Element calculation (ME).

Herwig

This generator reproduces hard processes, parton showering and QCD effects at
the LO. It simulates angular ordered parton shower and the hadronization process
is modeled by cluster fragmentation. It is used in combination with the POWHEG
for parton showering and hadronization.

Powheg

Generate the hardest emission with positive weight event of the Next to Lead-
ing Order (NLO) corrections. This is the extensions of the shower algorithms.
It is used the difference between PyTHIA and HERWIG for parton showering and
hadronization.

aMCQ@NLO

It provides matching calculation for QCD process with a parton showering in
the hadronization. To avoid double counting events which come from NLO cal-
culation, the events are provided negative weight as well as positive weight. It is
used in combination with between PYTHIA for Matrix Element calculation (ME).

Sherpa
Event generator for simulation of high energy reactions of particles. It simulate
better for final states with large number of isolated jets than PyTHIA and HER-

WIG. It is used in the background contribution from the Diboson production, and
the associated production of W and Z boson with heavy flavour jets.
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MadGraph

It is the matrix element generator for parton level simulation and is used for
rare standard model processes. QCD shower and hadronization are simulated by
PyTHIA. It is used in the background contribution from the rare standard model
processes.

The nominal simulated signal tf sample is generated at the NLO using the
POWHEG [42] generator, interfaced to PYTHIA8 [43] for parton showering and
hadronization with Aqamp parameter set to 1.5m;. In this case the fast-simulation
package ATLFAST?2 [44] (AFII) is used instead. This is based on a parametriza-
tion of the performance of the electromagnetic and hadronic calorimeters measured
in the test-beam or in the GEANT4. The difference between the full simulation
(Full) is covered to be marginal after examining a number of reference signal points.
The subsequent procedures are identical to what is processed for the data sample.
To estimate the effect of the matrix element systematic uncertainty, the nominal
sample is compared to the one generated using AMC@NLO [45] and the parton
shower uncertainty is estimated by comparing PYTHIA8 to HERWIGT [46].

4.2.1 Signal and background samples

Processes with top pair production and additional bosons produced with AMCQNLO
for hard scattering and Pythia8 for parton shower and hadronization. The detailed
list of signal ¢t samples used in this analysis is shown in Table. 4.1 with their the-
oretical cross-sections and k-factors, the ratio of the NLO to LO cross section for
a given process.

Filter Generator cross-section(pb) K-factor Simulation
tt nominal samples
dilep filt. Powheg+Pythia8 76.95 1.1398  Full
non all had Powheg+Pythia8 396.87 1.1398 Full
tt alternative samples

dilep filt. Powheg+Pythia8 76.95 1.1398  AFII
non all had Powheg+Pythia8 396.87 1.1398 AFII
dilep filt. Powheg+Pythia8 hgamp = 3.0m; 76.94 1.1398 AFII
non all had Powheg+Pythia8 hqamp = 3.0m;  320.01 1.1398 AFII
dilep filt. AMCQ@NLO+Pythia8 76.316 1.1681 AFII
SingleLep ~ AMC@NLO+Pythia8 313.275 1.1691 AFTI
dilep filt. Powheg+Herwig7 77.00 1.1391 AFII
non all had Powheg+Herwig7 320.112 1.1392 AFII

Table 4.1: Summary of the signal MC samples.
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The background samples represent different physics processes, which have sim-
ilar decay products as the ¢t signal and thus can also pass the ¢t selection criteria.
The background consisting of single top events is produced with Powheg+Pythia8,
where the W boson from top quark decays leptonically. The backgrounds from the
Diboson production are estimated using Sherpa 2.2.1 samples. Leptonic decays of
vector bosons produced in association with jets, referred to as W+jets and Z+jets,
are considered and Sherpa 2.2.1 is used as generator. Rare SM processes with top
pair production and additional bosons are included and much small background
contribution. Table 4.2 shows summary of the background samples. The detail of
the background sources is shown in Sec. 6.2.
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Filter Generator Cross-section(pb) K-factor Simulation
Single top
t-ch_top Powheg+Pythia8 36.993 1.00 Full
t-ch_antitop Powheg+Pythia8 22.175 1.00 Full
Wt _inclusive_top Powheg+Pythia8 37.936 0.945 Full
Wt_inclusive_antitop Powheg+Pythia8 37.906 0.946 Full
s-ch_top Powheg+Pythia8 2.0268 1.015 Full
s-ch_antitop Powheg+Pythia8 1.2676 1.015 Full
WHjets
W — uv Sherpa2.2.1 20472.488 0.9702 Full
W — ev Sherpa2.2.1 20476.908 0.9702 Full
W — 1v Sherpa2.2.1 20507.226 0.9702 Full
Z+jets
Z = pp Sherpa2.2.1 2138.730 0.9751 Full
7 — ee Sherpa2.2.1 2137.697 0.9751 Full
Z =TT Sherpa2.2.1 2138.015 0.9751 Full
Z-+jets — low mass (10 GeV < m(ll) < 40 GeV)
Z — up Sherpa2.2.1 2465.673 0.9751 Full
Z — ee Sherpa2.2.1 2466.284 0.9751 Full
Z =TT Sherpa2.2.1 2468.6697 0.9751 Full
Diboson
1 lepton Sherpa2.2.1 15.564 0.27976  Full
1 lepton Sherpa2.2.1 15.563 0.13961  Full
1 lepton Sherpa2.2.1 159.104 1.00 Full
2 and 3 leptons Sherpa2.2.1 0.60154 1.00 Full
Rare standard model processes
W aMCQNLO+Pythia8  0.5483 1.10 Full
tt7 — vv aMCQ@QNLO+Pythia8 0.15499 1.11 Full
ttZ — qq aMCQ@QNLO+Pythia8 0.52771 1.11 Full
ttee aMCQ@QNLO~+Pythia8  0.036888 1.12 Full
ttpp aMCQ@QNLO-+Pythia8  0.036895 1.12 Full
ttrT aMCQ@QNLO~+Pythia8  0.036599 1.12 Full
ttH (1 lepton) Powheg+Pythia8 0.22276 1.00 Full
ttH (dilepton) Powheg+Pythia8 0.05343 1.00 Full
tZ MadGraphb+Pythia8 0.24037 1.00 Full
tWZ (DR) aMCQ@QNLO~+Pythia8  0.016046 1.00 Full

Table 4.2: Summary of the background processes.
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Chapter 5

Object definition

Particles originating from the proton-proton collisions are reconstructed by com-
bining information from various subdetectors. These reconstructed elements are
used in the ATLAS experiment, and called as “object”. This chapter describes
definition for the physics objects, which include electrons, muons, jets, and missing
transverse momentum (ER). The tf charge asymmetry can be measured by two
charged leptons, two b-tagged jets and ERsS from tt — WHbW=b — [Tybl~ b
process.

5.1 Primary vertices

The reconstructed tracks come from points in an bunch collision, indicating “primary
vertices”. A primary vertex has at least two charged tracks reconstructed by the
inner detector (ID). The tracks can be clustered according to the z position at the
beam line.

For hard-scatter physics processes including tf pair production by proton-
proton collision, it is necessary to identify the hard-scatter primary vertex as
the primary vertex with the highest Zpgr tracks Where pr gack is the transverse
momentum of track associated to the vertex, is chosen.

5.2 Electrons

An electron is reconstructed [47] based on a cluster in the electromagnetic calor-
imeter, which is associated to a charged track reconstructed in the ID. To reject
backgrounds while keeping high efficiency for prompt electrons (such as W — ev),
electron identification algorithms are based on discriminating variables. Here,
backgrounds means mis-identified hadronic jets as well as electrons form semileptonic
heavy-flavour hadron decays, Dalitz decays and photon conversion. The technique
is multivariate analysis(MVA) using a likelihood(LH) [48]. The electron LH makes

39



use of signal and background probability density functions(PDFs) of the discrim-
inating variables. Signal and background PDFs used for the electron LH identific-
ation are obtained from data.

In this analysis, the TightLH electron identification criteria are used to identify
the signal electrons from W boson decays.

In addition to the identification criteria described above, isolation is required to
select electrons from W boson decays. The isolation variables quantify the energy
of the particles produced around the electron candidate. The Gradient isolation is
applied for the signal electrons. In case of Gradient isolation, the combined calor-
imeter and tracker isolation leads to an signal electron reconstruction efficiency of
90% at pr = 25 GeV and 99% at pr = 60 GeV [48].

On the other hand, loose MediumLH criteria without isolation requirement is
used to estimate the contribution from fake electrons.

5.3 Muons

Unified muon identification chain [49], which combines information from the inner
detector and the muon spectrometer(MS), is used to reconstruct muons. Muon
identification is performed by applying quality requirements that suppress back-
ground, mainly from pion and kaon decays (7, K — uv), while selecting prompt
muons (such as W — pr) with high efficiency. To guarantee a robust momentum
measurement, specific requirements on the number of hits in the ID and MS are
used. For the ID, the quality cuts require at least one Pixel hit, at least five SCT
hits, fewer than three Pixel or SCT holes, and that at least 10% of the TRT hits
originally assigned to the track are included in the final fit; the last requirement is
only employed for || between 0.1 and 1.9, in the region of full TRT acceptance.
The Medium identification criteria provide the selection as signal muons from W
boson decays. This selection minimizes the systematic uncertainties associated
with muon reconstruction and calibration.

To develop algorithms to define muon isolation quantities using calorimeters,
tracker tracks, etc. for different types of muon candidates, the muon isolation is
applied. In this thesis, the Gradient isolation is applied, same as in the case of
electrons.

5.4 Jets

Jets are reconstructed from clustered energy deposits in the electromagnetic and
hadronic calorimeters. The anti-k; algorithm [50] is used to reconstruct jets from
topological calorimeter clusters [51]. Truth muons are added to the four mo-
mentum of the truth jet if they are within radius parameter R < 0.4. This is
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because the generator level jets are electro-magnetic topoclusters(EMTopo). The
EMTopo scheme is used for jet calibration. Jets are accepted within || < 2.5.

5.4.1 B-tagging

A multivariate MV2 algorithm [52] is used to identify b-jets initiated by b quark.
A Schematic of the production of a b-jet is shown in Fig. 5.1. The b-tagging al-
gorithms identify displaced vertices formed by tracks in the cones of reconstructed
jets, taking advantage of the large mass (5 GeV) and long lifetime (1.5 ps) of b-
hadrons in the b-jets. This gives rise to a displaced secondary vertex which is a
key signature of a b-hadron decay. In this analysis, results from three standalone
b-tagging algorithms Secondary Vertex Finding (SV1), Decay Chain Multi-Vertex
Algorithm (JetFitter) and Impact Parameter based Algorithm (IP3D) [52] are
combined using the boosted decision tree (BDT) algorithm. In this analysis, a
MV2c10 algorithm is used, where the threshold c10 is defined that the background
sample consists of 10% (90%) c-(light-flavour) jets. The light-flavour jet rejection
for 77% b-jet efficiency working point is used. The corresponding rejection factors
for jets initiated by a ¢ quark, tau lepton, and light quark are 4, 16, and 113,
respectively.

7 Jet axis

7 Secondary
y '. vertex

D length
Primary vertex /¢~ ccay leng

/\ Impact parameter

Figure 5.1: Ilustration of the production of a b-jet [53]. A displaced secondary
vertex is identified as a b-jet. It is dedicated the decay length in the plane transverse
to the beamline and the impact parameter for one of the tracks.

5.4.2 Pile-up

During 2017 data-taking, there was a mean of approximately 20 interactions per
bunch crossing. There is therefore potentially a large contamination from non-hard
scatter pile-up interaction. The energy deposits from these pile-up interactions in
the calorimeters can be reconstructed into jets. The Jet Vertex Fraction (JVF) [54]
is defined as the summed scalar pr of the tracks associated with both the jet and
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the primary vertex divided by the summed scalar pr of all tracks in the jet. The
Jet Vertex Tagger (JVT) [54] is a tool identifying jets derived from hard-scatter
vertices except pile-up jets using the JVF. In particlular, the JVT algorithm is
used to reject low-pr pile-up jets. The discriminant is required to be larger than
0.59 for jets with pr < 60 GeV.

5.5 Missing transverse momentum

miss

The missing transverse momentum vector p2 with magnitude E2 is calculated
from a vector sum of p of reconstructed objects. Tracks and calorimeter cells
without any associated object are also considered.

The primary sources of uncertainty related to the EM come from the scale and
resolution of the objects which the EZ is reconstructed from and the description
of additional calorimeter energy from pile-up events. The overall systematic un-
certainty related to EM is obtained using the uncertainty in scale and resolution
of the charged leptons, jets.

5.6 Overlap removal

In order to avoid double counting of single final state objects, overlap removal
procedure between electrons, muons and jets is implemented [55] as a sequence of
operations:

e Electron candidates sharing a track with a muon candidate are removed.

o [f the distance between a jet and a baseline electron is AR < 0.2 the jet is
dropped. If multiple jets are found with this requirement, only the closest
one is removed.

e If the distance in between a jet and a baseline electron is 0.2 < AR < 0.4
the electron is dropped.

o [f the distance between a jet and a baseline muon is AR < 0.4, then: If the
jet has more than 2 associated tracks the muon is dropped, otherwise the jet
is removed.
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Chapter 6

Event reconstruction

This chapter, the selection criteria used in the measurement are summarized. The
physics objects in the analysis is explained as described in chapter. 5. The selec-
tions applied to leptons, jets, M. In dilepton channels (ee, ey, and up), the
number of signal and background events is expected and shown in event yields. In
dileptonic events, two neutrinos are produced and escape undetected. Thus, an
underconstrained system is obtained. To reconstruct the top and antitop quark
momenta, precise reconstruction of the t¢ kinematics is required.

6.1 Selecton criteria

Signatures of the events for the dilepton channel are two oppositly isolated charged
leptons and two b-jets. Events are separated into three channels according to
lepton flavor; either exactly one electron and one muon (ep channel), or two same-
flavor leptons (ee and ppu channels). The following selection criteria are used in all
channels:

e Event quality — to avoid events affected by detector noise the GoodCalo
criteria must be fullfilled. Any event with at least one jet flagged as LooseBad
is rejected. Single electron and muon trigger are required, at least one of the
triggers must be fired.

e Lepton selection — exactly two high-pr charged leptons; one charged lepton
with pr > 28 GeV and one additional charged lepton with pr > 25 GeV. The
leptons are required to be of opposite electric charge and at least one of the
leptons must be matched to the following trigger: Data 2015:
e: HLT e24 1hmedium L1EM20VH, HLT e60_lhmedium, HLT €120 _1hloose
p: HLT mu20_iloose_L1MU15, HLT mub0
Data 2016 and 2017:
e: HLT_e26_1lhtight nodO_ivarloose, HLT_e60_lhmedium nodO, HLT_e140_1hloose_nod0
p: HLT mu26_ivarmedium, HLT mub0
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e Jets — At least 2 jets with pr > 25 GeV are required. At least 1 b-tagged jet
is required. The events are categorized into 1 b-tag exclusive (1-b excl.) and
2 b-tag inclusive (2-b incl.) regions according to the b-jet multiplicity.

In ee and pp channels, the largest contribution to the background comes from the
associated production of Z boson with heavy flavour jets, so following criteria are
required;

e 7/ veto — The reconstructed invariant mass of the dilepton system is required
to be outside of Z boson mass window (|my — mz| > 10 GeV).

e Drell-Yan process veto — The reconstructed invariant mass of the dilepton
system is required my; > 15 GeV for rejecting the production of Z boson
through the Drell-Yan process. Moreover, to avoid large uncertainties from
mismodeling the E2 distribution, EX is required to be larger than 20 GeV.

6.2 Predicted signal and background events

To predict signal and background contributions after applying the selection cri-
teria, several MC event generators are used. The background contribution in this
measurement comes from the associated production of Z boson with heavy flavour
jets, single top production associated with a W boson and prompt leptons from
W ,Z boson. Moreover, the background arising from misidentified and nonprompt
leptons as “Fakes” is determined using both MC simulated samples and data. This
contribution is estimated using MC simulated samples, modified with corrections
derived from data. In background estimation from the associated production of
Z boson with heavy flavour jets and Fakes, they require a scaling factor due to
difficulty of MC modelling the data in the ee and pp channels. In detail of each
background estimation, it is shown in the reference [56].

6.2.1 Event yield in ex channel

In ey channel, the background contamination is much smaller than ee and pp chan-
nels. The event yields after selection criteria are estimated as shown in Table. 6.1.
The number of events in ey channel is the largest among three channels. The
dominant background contribution comes form single-top production (single top
production associated with a W boson). The physcis objects after selection are
shown as the plots in signal region. For example, in case of ey 1 b-tag exclusive,
the corresponding plots are estimated as shown in Fig. 6.1-6.3. The distribution
of these properties(individual lepton, dilepton, jets, and EX) are consistent with
the data and MC predictions.
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Process:

et channel

1 b excl.

2 b incl.

tt

1167104128

136327135

tt (other final state)

Single top
Diboson
Z + jets

Rare SM (ttV, ttH, etc)

Fakes

13559444
7506439
43545
398138
28942
167+13

15218446

3099425
33£1
50+6
430+3
50+5

Total Prediction

1390654146

155208144

Data (79.7 fb™1)

140839

157055

Table 6.1: Event yields in the dilepton topology, ex channel split by b-tag multipli-
city (1-b excl., 2-b incl.). Presented uncertainties include statistical and systematic

uncertainties. No fake lepton calibration factor is applied here.
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Figure 6.1: A comparison of the observed data and prediction for the individual

lepton properties in the ep 1-b excl. channel. The bottom panels show the ratio of
MC to data predictions.
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Figure 6.2: A comparison of the observed data and prediction for the dilepton
properties in the ey 1-b excl. channel. The bottom panels show the ratio of MC to
data predictions.
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6.2.2 Event yield in ee channel

The event yields after selection criteria are estimated as shown in Table. 6.2. The
largest background contribution comes from the associated production of Z boson
with heavy flavour jets. For example, in case of ee 1 b-tag exclusive, the corres-
ponding plots are estimated as shown in Fig. 6.4. In ee channel, the MC predictions
are consistent with data event.

Process: ee channel
1 b excl. 2 b incl.
tt 40954476 | 51361483
tt (other final state) 5333+28 6363+27
Single top 2652423 1162£15
Diboson 198+3 24+1
Z + jets 66324249 | 10194111
Rare SM (ttV, ttH, etc) 11442 17442
Fakes 324+36 73£6
Total Prediction 56206£266 | 60176+143
Data (79.7 fb™1) 59235 61519

Table 6.2: Event yields in the dilepton topology, ee channel split by b-tag mul-
tiplicity (1-b excl., 2-b incl.). Presented uncertainty include detector systematics,
background normalization and statistical uncertainty. No fake lepton calibration
factor is applied here.

6.2.3 Event yield in pu channel

The event yields after selection are estimated as shown in Tables. 6.3. The largest
background contribution comes from the associated production of Z boson with
heavy flavour jets. For example, in case of uu 1 b-tag exclusive, the corresponding
plots are estimated as shown in Fig. 6.5. In pp channel, the MC predictions are
consistent with data event.
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ppt channel

Process: 1 b excl 2 b incl.

tt 51617+83 | 64701492

tt (other final state) 5095426 6134+28

Single top 3251425 1443+16
Diboson 25444 40+£2

Z + jets 102024281 1451485

Rare SM (ttV, ttH, etc) 135+2 200+2
Fakes 76+3 2942

Total Prediction 70630+£295 | 739984129

Data (79.7 b 1) 75152 76825

Table 6.3: Event yields in the dilepton topology, uu channels split by b-tag mul-
tiplicity (1 b-excl., 2-b incl.). Presented uncertainty include detector systematics,
background normalization and statistical uncertainty. No fake lepton calibration
factor is applied here.
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Figure 6.5: A comparison of the observed data and prediction for lepton properties
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50



6.3 Kinematic reconstruction

Kinematic reconstruction of top and anti-top pairs in the dilepton channel is per-
formed due to the presence of two unobserved neutrinos in the final state. In each
event, there may be more than two jets and therefore many possible combinations
of jets to use in the kinematic reconstruction. In addition, there is an ambiguity
in assigning a jet to the ¢ or to the ¢ candidate. In events with only one b-tagged
jet, the b-tagged jet and the highest-pt non-b-tagged jet are used to reconstruct
the ¢t and ¢, whereas in events with two or more b-tagged jets, the two b-tagged jets
with the highest weight from the b-tagging MV2c10 algorithm are used. The re-
constructed ¢, ¢, and tf system are constructed using the neutrino weighting (NW)
method [9].

6.3.1 Neutrino Weighting method

Although the individual four-momenta of the two neutrinos in the final state are
not directly measured in the detector, the sum of their transverse momenta is
measured as p2*5. The absence of the measured four-momenta of the two neutrinos
leads to an under-constrained system that cannot be solved analytically. However,
if additional constraints are placed on the mass of the top-quark, the mass of the
W boson, and on the pseudorapidities of the two neutrinos, the system can be

solved using the following equations:

(019 +v12)* = m¥y = (80.4 GeV)?,
(b1 + 1o+ b1o)? = m? = (172.5 GeV)?, (6.1)
77(V1), 77(1/2) ="M, M2,

where ¢, 5 are the charged leptons, v, are the neutrinos, and b; » are the b-jets
(or jets), representing four-momentum vectors. Here, 1, 7, are the assumed
pseudorapidity values of the two neutrinos. The values are scanned between —5
and 5 in steps of 0.2. In total, 2500 combinations are tested for reconstruction of
a top-pair in each event.

With the assumptions about my, my,, and values for n; and 7, equation (6.1)
can now be solved, leading to two possible solutions of p for each assumption
of (1) and 7n(ry). Only real components are considered though solutions are

miss

complex numbers in general. A ‘“reconstructed” p7'® value resulting from the

miss

neutrinos for each solution is compared to the p™* observed in the event. If this
reconstructed pii® value matches the observed p2'* value in the event, then the
solution with those values of 7, and 7, is likely to be the correct one. A weight,

w, is introduced in order to quantify this agreement:

_Apmiss2 _Apz’liss2
_ z . oy 2
w = exp ( 207 ) exp < 202 , (6.2)
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miss

I?y
is the resolution of the observed pi™* in the detector in the z—y plane. The p}'s®

resolution is taken to be 20% for both the x and y directions [57]. The assumption

where Ap™* is the difference between reconstructed and observed values and o,

for n(v1) and n(v,) that gives the highest weight is used to reconstruct the ¢ and
t for that event. The highest-weight solution remains the same regardless of the
choice of 0, ,.

Equation (6.1) sometimes become unphysical value for a particular assumption
of n(v1) and n(vy). This can be caused by misassignment of the input objects
four-momenta and it becomes unphysical value in a real component. To mitigate
these effects, the assumed value of m; is varied between the values of 171 and
174 GeV, in steps of 0.5 GeV, and the pt of the measured jets are smeared using
a Gaussian function with a pp-dependent width between 14% and 8% of their
measured pr. This allows the NW algorithm to shift the four-momenta (of the
electron, muon and the two jets) and m; assumption to see if a solution can be
found. The solution which produces the highest w is taken as the reconstructed
system, and the weight is required to be at least 0.0 in order to remove events
with poorly reconstructed kinematics. Solutions which provide an invariant mass
of the ¢t system below 300 GeV, or which provide ¢ or ¢ with negative energies, are
automatically rejected.

For a fraction of events, even smearing does not help to find a solution. Such
events are not included in the signal selection and are counted as an inefficiency
of the reconstruction. For example, in case of ey 1 b-tag exclusive, the top-quark
and top-pair properties after applying NW are estimated as shown in Fig. 6.6.
The total prediction with systematic uncertainties is good in agreement with data
event.

Moreover, other different technique used for reconstruction of top and antitop
quark momenta was considered: the KLFitter method [58]. Comparison of these
techniques is provided in App. C. Based on the study, the NW method was chosen
our promary method, and the detail of KLF method is summarized in App. B.
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Chapter 7

Unfolding

In this chapter, a analysis method as the main point of this thesis is described.
The observed Al|y| distribution needs to be corrected by “unfolding” because the
observed Aly| distribution is distorted due to detector resolution and acceptance
effects. In this thesis, the Fully Bayesian Unfolding (FBU) [10] is used to estimate
the charge asymmetry from the reconstruction level spectra. A method called
marginalization is used to surpress the systematic uncertainties.

7.1 Method description

FBU is an application of Bayesian inference to the problem unfolding: Given the
data (D € N*") and the response matrix M € R x R (as described in App. D)
we want to estimate the actual truth-level spectrum (T € RM).

Bayesian inference:

P(T|D, M) x £(D|T, M)x(T), (7.1)

where P(T|D, M) is the posterior probability of the true spectrum T; £(D|TM)
is the likelihood function of D given T and M and =(T) is the prior probability
density for the true spectrum T. These are further described in Sec. 7.1.1 and
7.1.2. By sampling the prior probability distribution of the true spectrum and
propagating the tallies through the likelihood, it is possible to obtain the posterior
distribution of the true spectrum. The sampling is described in more detail in
Sec. 7.1.3.

7.1.1 Likelihood

The likelihood term in the Bayes theorem is based upon assumption that the data
follows Poisson statistics. The likelihood is defined by comparing the observed
spectrum D with the expected one R; assuming Poisson statistics & background
prediction B € RVr:
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N,
oIt M,B) =] %<> (72)
i=1 i

where 7; and b; are the expected signal and background yields in i** bin respectively
and d; is the observed data yield in i** bin. The relation between the expected
reconstructed signal distribution and the true distribution 7" can be expressed by
response matrix M.

Nr
ri(T, M) = myjt;, (7.3)
=0

where the response matrix M is defined by its elements m;; = ¢, P(rt;). It
contains two pieces of information:

e ¢, - the efficiency for an event from a true bin ¢; to be reconstructed in any
bin r

e P(r;|t;) - probability for an event produced in the true bin ¢; to be observed
in the reconstructed bin r;

The ¢;, effectively determines the combined detector acceptance, reconstruction ef-
ficiency and selection efficiency.The probability P(r;|t;) determines the migrations
of events that were reconstructed and passed the selection.

7.1.2 Prior

Prior probability density 7(T) is to be chosen according to what we know about
T before the measurement is performed. The simplest possible choice is a flat,
so called “uninformative” prior, which is a bounded uniform distribution: Such a
choice of prior makes no assumptions about T other than that values outside of a
chosen interval are not considered. It is possible to extend this choice of prior with
additional information, effectively introducing regularization function, defined by

S(T):

(7.4)

0 otherwise

S if T, € [T}, T,],Vt € [1, N{]
7(T) x

where « is an arbitrary parameter. This enables to use additional information
to constrain the parameter space and reduce variance at a cost of introducing a

small bias. In this analysis, an uninformative prior is used with bounds given by
MC-based prediction T: [0, 2T].
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7.1.3 Sampling

The posterior probability distribution P(T,D) is determined by sampling the
N;-dimensional parameter space and evaluating for each point the product of
L(D|T,M) and 7(T), thus performing a numerical integration. The sampling
is performed using Markov Chain Monte Carlo-based methods [59]. Two sampling
algorithms are employed simultaneously within FBU to sample the parameter
space:

e Metropolis-Hastings algorithm [60] used to sample discrete distriutions, such
as the Poissonian-distributed unfolded truth bins.

e No-U-turn sampler algorithm [61] used to sample continuously-distributed
parameters, such as nuisance parameters.

Within FBU, the technical implementation of the sampling is done using the
PyMC3 package [62]. The unfolded ¢t charge asymmetry are estimated using
No-U-turn sampler(NUT) algorithm. The result of the sampling is the posterior
probability distribution for each bin of the spectrum, in contrast to other unfold-
ing methods where the result is an estimate with its variance for each bin of the
unfolded spectrum. Subsequently, posterior probability density distribution can
be obtained for any quantity that is computed from the spectrum, such as Ac:

p(4ciD) = [ (40 = Ac(T)P(TID)IT (7.5)

The mean and width of the posterior distribution represent the estimate and its
variance.

7.2 Marginalization

Treatment of systematic uncertainties is naturally included by extending £(D|T)
with nuisance parameter terms. Marginal likelihood is defined as

£(D|T) = / L(D|T, 0)x(0)d0 (7.6)

where 6 are the nuisance parameters and 7(6) their priors - Gaussian distributions
G with p =0 and o = 1. Two categories are considered:

e Background normalizations 6, - affect only the background predictions

e Uncertainties related to object identification, reconstruction & calibration 6,
- affect both the signal and background prediction; R(T;6s) and B(6,, 6,)
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After including the nuisance parameters, The signal reconstructed-level prediction
is then:

ri(T, M;8,) = r;(T, M;0) (1 +) 9’;Ar§> (7.7)
k

where 7;(T, M;0) is defined as above equation and Ar? is the relative systematic
uncertainty variation on signal yield in i* bin corresponding to the k* nuisance
parameter 6%,

Similarly the prediction for each background process:

bi(05, 0,) = b;(0)(1 + 6,Ab) <1 +> egAbf) (7.8)

where b;(0) is the predicted yield of background in i bin, Ab is the relative
uncertainty on the background normalization and Ar¥ is the relative systematic
uncertainty variation on signal yield in i** bin of background corresponding to k"
nuisance parameter 6%

The marginal likelihood becomes then:

£(DIT) = / L(DIR(T;6,), B0, 0,))C(0,)G (65) 6,6, (7.9)

The marginal posterior probability density for T is computed by sampling the N,
and N, parameter space, where N, is the total number of nuisance paramet-
ers, and projecting the sample over the T parameter space. The projections over
each nuisance parameter give the corresponding marginalized posterior probability
density. Typically, this posterior probability density is a Gaussian. The mean and
variance of the marginalized posterior distribution correspond to the marginalized
nuisance parameter pull and constraint. For nuisance parameters which can be
further constrained from the data, this posterior distribution function will be nar-
rower than the prior distribution. Examples of the prior and posterior probability
densities for two nuisance parameters are shown in Fig. 7.1. The posterior probab-
ility density for Ag is computed as described in Sec. 7.1.3 with the difference that
the RMS of the marginal posterior represents the total uncertainty. Similarly, each
nuisance parameter is estimated by the mean value and RMS of the corresponding
projection of the posterior probability density.
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Figure 7.1: The prior and posterior probability density for nuisance parameters
corresponding to electron trigger scale factor (a) and a component of b-tagging
effciency calibration (b). No constraint is observed for the electron trigger scale
factor, while the b-tagging effciency calibration is constrained and pulled because
the sample is divided in b-jet multiplicity bins.(see Sec. 7.3)

7.3 Channel combination

Using orthogonal channels with different background contamination enables to
constrain the individual systematic uncertainties and to reduce the total uncer-
tainty by exploiting additional information in the individual regions. Having the
nuisance parameters common to all channels, the likelihood is:

24D+ Dy, )T = [ LT 0600 (7.10

The final posterior probability density:

P(THD: - Da,)) = [ T]£DR(T36.).B(6.,60)

G(05)G(6)m(T)db:d6,
Here, the probability density is applied to fit using Asimov data set, which provides

(7.11)

a simple method to obtain the median experimental sensitivity of a search or meas-
urement as well as fluctuations about the expectation. The nuisance parameters
obtained from Asimov fit are shown in Fig. 7.2 for inclusive tf asymmetry. The
estimations of nuisance parameters are using PYMC3.
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Figure 7.2: Nuisance parameters for the inclusive A’g measurement obtained from
Asimov (black) and Data (red) marginalization in combined all dilepton channels.
The color regions highlight the 1o (green) and 20 (yellow) intervals of the prior
probability density. The estimations of nuisance parameters are using PYMC3.
The boostrapping is applied, for the sampling, a tuning of the sampling parameters
is performed using 4x2500 steps. To tally the posterior distributions, 4x10000
sampled steps are used.

The nuisance parameters for the inclusive and differential measurements are
shown in App. G.
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7.4 Binning choice and bias

For the unfolding, an appropriate binning of reconstructed Aly| distributions as
well as true Aly| distribution must be chosen. Two competing factors determine
the choice of binning in the Aly| distribution:

e Smaller number of bins implies smaller relative statistical uncertainties and
vice-versa. At least two bins are necessary to compute A’g (positive and
negative side of the Aly| distribution).

e Larger number of bins allows to track the migrations more accurately and
thus allow to obtain unbiased estimates for each bin content. However, only
migrations that change the A|y| sign affect the computation of A¢ and these
are more likely for small A|y| values. Therefore a fine binning is required in
the central Aly| region.

As was shown previously [63], four bins in Aly| is the minimum required for an
unbiased response. Using more than 4 bins increases the complexity of the un-
folding, therefore we use exactly 4 bins for Alyy;| distribution. The bias in the un-
folding response is measured by studying the unfolded asymmetry in pseudo-data
samples with known true asymmetry. These samples are obtained by reweighting
the baseline signal sample to a different charge asymmetry prediction event-by-
event based on the value of true Aly;|. Two independent reweightings can be
considered:

e Protos reweighting: Based on BSM axigluon models in which the asym-
metry value is predicted to be significantly different from the standard model
one. It is defined as a ratio of simulated heavy axigluon sample generated
using the PROTOS generator [64] over the nominal signal sample. Asym-
metries of ~ +1%, 2%, £3%, and £4% are considered.

e Linear reweighting: The Aly,;| distribution is reweighted per-event by
w =1+ Fk x true Aly|.

In order to achieve an unbiased unfolded asymmetry, the Aly,;| bin edges x in
binning of [-5.0, —x, 0, x, 5.0] need to be optimized. The PROTOS reweighted
sample is used for this study (more details in App. F). The linear reweighted
sample is used as a cross-check.

The criterion to select the best binning is based on the expected statistical sens-
itivity and the linearity test of the Al|y;;| binning, in order to have an unbiased
estimate when looking at the calibration curves. Ideal linearity is achieved when
the slope of the calibration curves is 1 and the offset is 0. If the agreement between
unfolded and truth Ag for the best binning configuration is not perfect, it is ne-
cessary to account for this bias in the overall uncertainty of the A% values. From
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the linearity lines, with unfolded A% = slope x truth A% 4 offset, inverting this
equation gives truth A% = (unfolded A%- offset)/slope. An uncertainty on the

unfolding is then given by:

bias = unfolded A%- true A% = unfolded A%- (unfolded A%- offset)/slope .

The optimal Aly| binning is obtained by running FBU with statistical uncertain-
ties only. To validate that linear response is kept when systematic uncertainties
are included in the FBU, the linearity tests are repeated with systematics included
using the optimal binning.

In the case of differential measurements, the choice of differential bin edges of
variable of interest (muz, prs, B..) is motivated by physics considerations as men-
tioned in Chapter 1. Taking into account the statistical limitations, the following
binning is used:

e my- 5 bins: [0, 500, 750, 1000, 1500, co]
e (.. 4 bins: [0,0.3,0.6,0.8, 1]
o pru- 3 bins: [0,30,120, oc]

Additionally for each bin of variable of interest (muz, pri, B..), we optimize bin
edges x in Aly| binning of [-5;—x; 0; x; 5]. The slope, offset, and bias obtained
from the PROTOS reweighting functions are shown in Tables 7.1.

Alys| binning Protos reweighting bias [%]

slope offset Aguncer.
inclusive [-5;-0.5; 0; 0.5; 5] || 0.9957+0.0039 | -0.0002+0.0001 3.30
myz € [0, 500] [-5;-0.4; 0; 0.4; 5] || 0.9752+0.0139 | 0.0003+£0.0003 1.15
mq € [500, 750] [-5;-0.5; 0; 0.5; 5] || 0.9716+0.0058 | -0.00040.0002 5.26
my; € [750, 1000] | [-5;-0.8; 0; 0.8; 5] || 0.9764+0.0151 | 0.0021+0.0005 7.05
my; € [1000, 1500] | [-5;-0.8; 0; 0.8; 5] || 1.0209+0.0294 | -0.0054+0.0010 9.91
my; € [1500, oo] [-5;-1.0; 0; 1.0; 5] || 0.7393+0.1003 | 0.006240.0034 1.95
prs € [0, 30] [-5;-0.5; 0; 0.5; 5] || 0.9901+0.0128 | 0.0004+0.0004 1.69
prs € [30, 120] [-5;-0.6; 0; 0.6; 5] || 1.0263+0.0103 | -0.0002+0.0003 1.38
pra € [120, o0] [-5;-0.6; 0; 0.6; 5] || 1.0236+0.0117 | 0.0000+0.0003 0.17
B.4i € (0.0, 0.3] [-5;-0.4; 0; 0.4; 5] || 1.0590+0.0303 | -0.00140.0004 6.65
B.4 € 0.3, 0.6] [-5;-0.4; 0; 0.4; 5] || 0.9946+0.0101 | 0.000740.0003 4.46
B4 € 0.6, 0.8] [-5;-0.7; 0; 0.7; 5] || 1.0460+0.0077 | -0.001140.0003 7.26
B4 € 0.8, 1.0] [-5;-0.5; 0; 0.5; 5] || 0.9584+0.0068 | 0.002140.0002 13.5

Table 7.1: Linearity test - the slope, offset and bias for inclusive and differential

Atct_. The statistical uncertainties are included in the linearity test.
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Figure 7.3: Linearity test results for the inclusive A% using PROTOS reweighting
function when the binning edge x = 0.5. It is included systematic uncertainties in

the tests.

In the case of inclusive measurement best results are gained with a Aly|
binning of [-5;-0.5; 0; 0.5; 5]. The optimal calibration lines with different injected
asymmetries at x = 0.5 are shown at Fig. 7.3. Futhermore, Iterative Bayesian

unfolding was also studied as described in App. E.
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Chapter 8

Systematic uncertainties

In this chapter, various systematic uncertainties affecting the signal and back-
ground prediction are considered. Individual sources of systematic uncertainties
are considered to be uncorrelated. In order to mitigate the effect of limited MC
statistics on systematic uncertainties, the bootstrapping method is used to smooth
systematic uncertainties that suffer from large statistical fluctuations. The treat-
ment of two-sided and one-sided systematic uncertainties is as follows, unless ex-
plicitly stated otherwise. For two-sided uncertainties, the average of up and down
variations (each with respect to nominal) is taken as a symmetric systematic two-
sided variation. For one-sided systematic uncertainties, the difference between
the shifted variation and nominal is taken as the uncertainty and symmetrized.
A nuisance parameter with gaussian prior is assigned to each systematic uncer-
tainty, unless otherwise specified, and their effect on the measurement is directly
embedded in the unfolding procedure.

8.1 Experimental uncertainties

8.1.1 Luminosity

The uncertainty on the combined 2015-2017 integrated luminosity is 2.0%. It is
derived, following a methodology similar to that detailed in [39], from calibrations
of the luminosity scale using x-y beam-separation scans performed in August 2015,
May 2016 and July 2017.

8.1.2 Pile-up

Scale factors are applied to reweigh simulated events in order to obtain the pile-
up distribution corresponding to data. An uncertainty on these reweighting scale
factors is considered, based on the disagreement between the instantaneous lumin-
osity in data [39] and in simulation. Both the nominal and systematically-shifted
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pileup-reweighting weights are obtained using the standard PileuReweighting
tool [65].

8.1.3 Lepton identification, reconstruction, isolation and
trigger

Lepton (e, ) identification, reconstruction, isolation and trigger performance dif-
fer between data and simulation and scale factors are applied to correct these
differences. These are obtained by a tag-and-probe method using Z boson, W
boson and J/1 decays [66, 67]. Uncertainties on the scale factors are considered.

8.1.4 Lepton momentum scale and resolution

Lepton momentum scale and resolution might be different between the simulation
and data. This is studied with reconstructed distributions of Z — ¢t~ J/¢ —
0 and W — ev using methods similar to [67, 68]. Observed discrepancies are
corrected and uncertainties on these corrections are considered.

8.1.5 Jet vertex tagger efficiency

The uncertainty related to the JVT scaling factors applied to the MC simulation
includes the statistical uncertainty, 20% uncertainty on the estimation of the re-
sidual contamination from pile-up jets after pile-up suppression and a systematic
uncertainty assessed by using different generators for the MC simulation of the
Z — pp and tt events [54].

8.1.6 Jet energy scale

The jet energy scale (JES) and its uncertainty is estimated from the test-beam
data, collision data and simulation using techniques described in [69]. Data taken
during the /s = 13 TeV data taking is used to calibrate the residual uncertainty
on the JES. Events with a vector boson and additional jets are used to calibrate
jets in the central region. Dijet events are used to calibrate forward jets against
the jets in the central region of the detector. Multijet events are used to calibrate
high pr jets. The measurements are combined and decorrelated into a set of 29
nuisance parameters which can have different jet pr and 7 dependencies [70].

8.1.7 Jet energy resolution

Jet energy resolution (JER) has been measured separately for data and simulation
using two in-situ techniques [69, 71]. The results of the measurement have been
further improved by an additional in-situ measurement using di-jet events and
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events with vy + jet or Z + jets. New methods using 2012 data [72] have been used
to measure the contribution originating from pile-up activity which contributes
significantly to the JER for low-pr jets. The corresponding systematic uncertainty
is defined as a quadratic difference between the jet energy resolutions for data and
simulation. To estimate the effect on the measurement the energy of jets is smeared
by this residual difference and the distributions are compared to the nominal ones.

8.1.8 Large jet moment scale and resolution

The scale of the detector response for all jet moments (pr, mass, 732) is derived by
comparing the calorimeter quantity to a reference track jet [73]. The resolution of
the detector response is conservatively estimated as a 2% absolute uncertainty on
pr and 20% relative uncertainty on jet mass (parametrized in jet pr and m/pr) [74].
Set of 14 nuisance parameters is used to estimate uncertainties due to these effects.

8.1.9 Flavour tagging

The effects of uncertainties in efficiencies for the heavy flavour identification of jets
by the b-tagging algorithm have been evaluated and measured from data. Scale
factors with their ucertainties are applied to each jet in the simulation depending
on its flavour and pr [52]. Together 9 scale-factor components are used to calibrate
b-jets, 3 for c-jets and 11 for light jets.

8.1.10 Missing transverse energy scale and resolution

The EX is calculated from several terms corresponding to different types of re-
constructed objects. Uncertainty on each object is evaluated and then propagated
to the uncertainty on EX5. Two methods are used to estimate the uncertainty on
the soft term that enters the EM calculation [75]. Different uncertainty sources
are combined into a total uncertainty on scale and resolution of E respectively.

8.2 Theory uncertainties

8.2.1 Cross-section and normalization

For all of the processes considered in the measurement, normalization uncertain-
ties are considered. The only exception is the signal normalization — the signal
contribution in the reconstructed Aly| distribution is given by the folded true Aly|
distribution as shown in Equation (7.3). Given that the bins of true Aly| distri-
bution are free parameters to be determined in the unfolding, the signal normal-
ization is effectively a free parameter (however not an explicit single parameter in
the likelihood). The background normalization uncertainties are assumed to have
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truncated Gaussian priors. A lower-bound truncation is imposed to avoid negat-
ive background yield. The relative prior uncertainties are 0.05 (¢t events with 7
leptons, dibosons), 0.053 (single top), 0.15 (Z + jets), 0.13 (rare SM processes),
and 0.2 (fakes).

8.2.2 tt Matrix element modelling

The matrix element (ME) modelling uncertainty is estimated in two different ap-
proach, out of which only one will be used for the final result. In the first approach,
the ME uncertainty is included in the nuisance parameter marginalization. The
systematic shift corresponding to this nuisance parameter is calculated as the
difference between AMCQNLO+PYTHIA8 and POWHEG+PYTHIAS, both simu-
lated using ATLFASTII simulation.

In the second approach, similarly to ME uncertainty, the uncertainty is estimated
from the difference of unfolded asymmetry of pseudodata obtained from the al-
ternative sample and the true asymmetry of the alternative sample. The migration
matrix is extracted from the POWHEG+PYTHIA8 nominal sample simulated by
ATLFASTII simulation. In this thesis, the choice of the final approach is first
one.

8.2.3 tt Parton shower and hadronisation modelling

The parton shower and hadronisation (PS) modelling uncertainty is estimated us-
ing the same two approaches as the ME uncertainty above. The choice of the
final approach is the same approach (marginalization approach) as ME. For the
marginalization approach, the systematic shift is calculated from the difference of
POwWHEG+PYTHIAS and POWHEG+HERWIGT prediction.

In the second approach, similarly to ME uncertainty, the uncertainty is estimated
from the difference of unfolded asymmetry of pseudodata obtained from the al-
ternative sample and the true asymmetry of the alternative sample. The migration
matrix is extracted from the POWHEG+PYTHIA8 nominal sample simulated by
ATLFASTII simulation.

8.2.4 tt Radiation modelling

Two sources of uncertainty on radiation modelling are considered; the initial state
(ISR) and final state (FSR) radiation.

For the ISR uncertainty, two different POWHEG+PYTHIAS samples with different
choices of factorization (u) and renormalisation (y,) scales, different Agamp and
different shower tune variations are compared. Both samples are simulated using
ATLFASTII simulation. The RadHi variation (radiation up) is estimated using
a dedicated MC sample with hgqamp = 517.5 GeV with scales iy = p, = 0.5 of
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the nominal scales and with the shower tune variation Var3cUp. The RadLo vari-
ation (radiation down) uses the nominal signal sample with hgamp, = 258.75 GeV,
varying the iy = p, = 2.0 of nominal and shower variation Var3cDown via weights
variations. For each of these variations, the systematic shift is calculated as the dif-
ference with respect to nominal POWHEG+PYTHIA8 simulated with ATLFASTII
simulation. Only the more conservative variation is taken, which is then symmet-
rized and included as a nuisance parameter in the marginalization. To decide
which of the two variations is more conservative, both variations are tested by
including them separately in FBU marginalization and the variation that yields
larger unfolded A¢ uncertainty is considered for final unfolding.

The FSR uncertainty is estimated using variation of o> in parton showering by
applying weights on the nominal signal sample. The uncertainty is propagated in
the same method as the ISR uncertainty, taking the variation resulting in larger
total uncertainty on unfolded Ac.

8.2.5 tt Parton distribution functions

The uncertainty on parton distribution functions (PDF) is propagated using the
PDF4LHC15 prescription [76], using a set of 30 nuisance parameters. The PDF
variations are propagated by using alternative MC generator weighs corresponding
to the PDF4LHC15 variations, stored within the nomial POWHEG+PYTHIAS tt
sample. The systematic uncertainty is obtained by comparing PDF variation to
PDF4LHC15 baseline prediction and symmetrized. Each of the 30 PDF variations
is considered as a separate nuisance parameter. For example, the summary of
configuration of the leading three PDF nuisance parameters is shown in Table. 8.1.

| PDFALHC15 Errorsets | day(Mp) [%] | d0e(M.) [%] [ o (Mg, My) [%] [ S0 (Ma, M) [%)] | dcs(Mg, Ma) (%) | d0s(M,) [%] |

PDF4LHC15 Error 1 21.48 2.773 (-7.373, -2.763) | (-1.558, -0.122) (-1.231, 3.530) 4.311
PDF4LHC15 Error 2 -89.46 -4.415 (8.446, -2.573) (-1.720, 0.027) (-0.355, 0.115) -1.851
PDF4LHC15 Error 3 17.00 3.169 (-0.907, -2.438) (4.289, -0.134) (9.561, -3.947) 4.588

Table 8.1: Setting of the PDFALHC15 several nuisance parameter sets for main
contribution. A baseline value of the strong coupling a(Mz) = 0.118 is used for
each of these sets, at both NLO and NNLO, with an uncertainty of das(Mz) =
0.0015. The difference weights form baseline are shown in each flavour. The same
weights set in b = b and ¢ = c.
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8.3 Tables with systematic uncertainties

Two approach for the total uncertainty are considered with and without mar-
ginalization of the ME and PS signal modelling systematic uncertainties. These
samples (ME, PS) are unfolded with keeping the response matrix using the nom-
inal POWHEG+PYTHIA8 sample fixed. The systematic uncertainties due to the
signal modeling is estimated by changing the Asimov dataset of these alternative
samples as follows.

Signal modeling unc. (PS,ME) = |A&ldalt _ glmealt) (8.1)

Total uncertainties without marginalization of the PS and ME uncertainties are
calculated in quadrature as below:

Total unc. w/o marg. of PS and ME = \/PS? + ME? + (excl.PS + ME)?

(8.2)
where PS and M E are calculated by above equation, excl. PS+ M E is the system-
atic uncertainties of marginalization excluding PS and ME. In detail, the compar-
ison with and without marginalization of these signal modelling uncertainties for
the inclusive and differential measurements are shown in App. H. A summary of
all different uncertainties affecting the measurements are shown in Table 8.2 using
MC samples. The main contributions are coming form statistical uncertainty in
dilepton channels.

8.4 Bootstrap generator method

The Bootstrap Generator [77] method is applied on each systematic uncertainty in
order to remove unphysical fluctuations due to limited Monte Carlo sample size. In
general it is not easy to estimate statistical uncertainties of the systematic effect,
since both the nominal and shifted distribution are typically largely correlated.
The Bootstrap method generates for each event n random weights from a Pois-
son distribution P(A = 1) and subsequently creates n replicas of the nominal and
shifted distributions by filling them event by event with the corresponding Poisson
weights. Run number and event number are used as a seed for generating the Pois-
son weights, this ensures that the events which are the same in both the nominal
and shifted distributions will behave in a correlated way. The relative difference
between the nominal and shifted distributions is then calculated in each bin for
all n replicas. The mean relative difference is taken as the systematic uncertainty
and the RMS as its statistical component.

Having the correctly estimated statistical uncertainties of the systematic uncer-
tainty it is possible to smooth the distribution in order to remove statistically
insignificant effects. The Aly| distribution contains only 4 bins in one channel,
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‘ ‘ Stat. ‘ Total ‘ No marg. ME/PS. ‘

| inclusive | 0.005 | 0.007 | 0.007 |
<500 GeV | 0.015 | 0.018 0.018
my 500-750 GeV | 0.008 | 0.010 0.010
750-1000 GeV | 0.025 | 0.028 0.029
1000-1500 GeV | 0.049 | 0.054 0.055
> 1500 GeV | 0.189 | 0.201 0.202
~ <30GeV  [0.016 | 0.019 0.019
PT# 30,120 GeV | 0.012 | 0.014 0.014
> 120 GeV | 0.013 | 0.019 0.017
0-0.3 0.019 | 0.021 0.022
B..i  0.3-0.6 0.014 | 0.016 0.017
0.6-0.8 0.012 | 0.013 0.014
0.8-1.0 0.011 | 0.013 0.013

Table 8.2: Summary of the uncertainties affecting the inclusive and differential A’g
measurements in the dilepton channels. Two scenarios for the total uncertainty are
considered - with and without marginalization of the ME and PS signal modelling
systematic uncertainties, labeled as Total and No marg. ME/PS, respectively.

therefore the smoothing procedure differs from the one described in [77] and [78].
Bootstrapping is applied on Aly| distributions (used for unfolding and the meas-
urement itself) only, not in the control distributions for other variables. All sys-
tematic uncertainties are bootstrapped, except those, which are 100% correlated
and therefore always statistically significant, such as various scale-factor system-
atic uncertainties.

8.5 [Effect of marginalization on data/MC agree-

ment

The FBU procedure is used to constrain the effect of the individual systematic
uncertainties. This reduces the total uncertainty significantly and improves the
agreement between data and prediction by pulling some of the uncertainties. This
is demonstrated in Fig. 8.1 - 8.4. By definition, there should be a perfect agreement
after the marginalization. For these variables, it doesn’t expect perfect agreement
between data and prediction, but if the pulls and constrains obtained from FBU
are physical, the agreement should be better after the marginalization procedure.
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Figure 8.1: Comparison between data and prediction for bins used in the inclusive
Ac measurements. This comparison is shown before (left, labeled as pre-fit) and
after (right, labeled as post-fit) marginalization within FBU.
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Chapter 9

Results

At first, the sensitivity of ¢t charge asymmetry after unfolding is discribed. The
sensitivities of the inclusive and differential charge asymmetries in the simulated
data corresponding to an intergrated luminosity of 79.7 fb~!, together with the MC
truth values as the green hatched regions are shown in Fig. 9.1. The red vertical
var indicates the statistical uncertainty and the blue one refers to total uncertainty
with the systematic uncertainty. The statistical unceratainties are caused by the
statistic of MC simulation. The estimation of systematic uncertainties is used
the Asimov data set. As mentioned in Chapter 8, the statistical uncertainties are
more dominant than the systematic uncertainties in both inclusive and differential
measurements. The systematic uncertaintiies are small enough for the statistics
uncertaintiies. These unfolded Ag mean values are in good agreement with the
MC truth values.
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Figure 9.1: The sentitivities of inclusive and differential charge asymmetries as a
function of the invariant mass, transverse momentum, and the transverse boost of
the top pair system, from the Asimov data sample. The statistical uncertainties
only (red) and total uncertainties (blue) are shown. Green hatched regions show
MC truth values with the uncertainties, and vertical bars correspond to statistical
and total uncertainties.

Finally, the ¢t charge asymmetry using the real data in an integrated luminosity
of 79.7 b~ at /s = 13 TeV, collected with the ATLAS detector is discribed. The
inclusive and differential tf charge asymmetry measured in an integrated luminosity
of 79.7 tb~! using the MC simulation and collision data are shown in Table 9.1.
In case of differential m;; measurement, the result is combined as the highest m;;
bin with m; > 1000 GeV because it is much less statistics in my;; > 1500 GeV as
mentioned in Sec. 8.3. In both case of inclusive and differential measurements, the
unfolded AY mean values using the MC truth values are consistant with the real
data within total uncertaintiies.
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Unfolded A%

‘ MC simulation H Collision data (79.7 fb™!) ‘

inclusive | 0.0035 = 0.0002 || 0.006 & 0.006 |
<500 GeV | 0.0031 + 0.0002 0.003 £ 0.017
~500-750 GeV | 0.0038 + 0.0002 0.012 £ 0.010
M 250-1000 GeV | 0.0053 4 0.0006 —0.037 £ 0.027
> 1000 GeV | 0.0039 =+ 0.0011 0.074 £ 0.052
~ <30GeV | 0.0086 =+ 0.0003 0.010 £ 0.018
PTAE 30,120 GeV | 0.0005 + 0.0002 0.011 & 0.014
> 120 GeV | 0.0009 + 0.0004 —0.018 + 0.019
0-0.3 0.0001 + 0.0003 —0.011 + 0.021
B 0.3-06 0.0011 + 0.0003 0.004 =+ 0.015
0.6-0.8 0.0027 + 0.0003 0.015 £ 0.013
0.8-1.0 0.0085 + 0.0003 0.014 £ 0.013

Table 9.1: Comparison of the inclusive and differential unfolded Ag in collision
data (79.7 fb™') and MC simulation (MC truth values).
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Chapter 10

Conclusion

The improvement of estimation method of the systematic uncertainties about the
tt charge asymmetry in dilepton final states has been presented. In this thesis,
to surpress systematic uncertainties, the uncertainties are estimated using Fully
Bayesian Unfolding based on bayesian statistics. Here, the bayesian technique
“marginalization” is used to deal with nuisance parameters affecting the measure-
ment.

The inclusive and differential ¢f charge asymmetry measured using the collision
data in an integrated luminosity of 79.7 fb~! with the ATLAS detector at the LHC
Vs = 13TeV, are:

Al = 0.006 £ 0.006(0.004(stat. only))

A% (500GeV < my < 750GeV) = 0.012 £ 0.010(0.008(stat. only))
AL (pth > 120CeV) = —0.018 £ 0.019(0.013(stat. only))

A% (0.8 < B < 1.0) = 0.014 4 0.013(0.010(stat. only))

For the result in /s = 8 TeV, the inclusive A% value is 0.021 £ 0.016(0.011(stat.)
+ 0.012(syst.)) [6]. The total uncertainty is about one-half smaller than the
Vs = 8TeV result. The total uncertainty with systematic uncertainty is sim-
ilar value to statstical uncertainty. Therefore, the systematic uncertainty has suc-
ceeded to reduce much small. In case of the differential measurements in the same
way, the systematic uncertainties are also surpressed.

In this thesis, the tf charge asymmetry is estimated using not full statistics
(140 tb™1) of LHC Run-2 until 2018 but the statistics of LHC Run-2 of 2015-2017
years. By the Asimov data (79.7 fb~!) extrapolated to 140 fb~', the inclusive A%
uncertainty is expected to 0.0057(0.0035(stat. only)). As compared with the total
uncertainties (0.0063) in the result this time, the precision of this measurement
will be improved approximately 10% only. The differential measurements will also
be improved in the same precision. For full Run-2 data (140 fb~'), the A% meas-
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urement can be reduced the statistics uncertainties, but needs to reconsider the
estimation of systematic uncertainties to improve more precision.

To increase statistics more, the ¢ charge asymmetry is also measured in lepton+jets
channel which has a leptonic W boson decay process (tf — WTbW b — qgblib).
The lepton+jets channel has advantage to measure Ag at much smaller statist-
ics uncertainties than dilepton channels because this channel has branching ratio
(~45%). However, the estimation of systematic uncertainties is difficult in this
channel because there are QCD backgrounds caused by one side hadronic decay

of W boson.
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Figure 10.1: A photograph of my cat. The cat’s name is Leon. I think that it may
be fateful, Leon hides in the dilepton channels which I focuses on this analysis.
(dilepton channels)

Shogo Kido
January, 2019
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Appendix A

Control plots
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Figure A.1: A comparison of the observed data and prediction for the individual
lepton properties in the ey 2-b incl. channel. The bottom panels show the ratio of
MC to data predictions.
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to data predictions.
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Figure A.8: A comparison of the observed data and prediction for the dilepton
properties in the ee 2-b incl. channel. The bottom panels show the ratio of MC to
data predictions.
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Figure A.9: A comparison of the observed data and prediction for the top-quark
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ratio of data to MC predictions.
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Figure A.10: A comparison of the observed data and prediction for the top-quark
and top-pair properties in the pp 1-b excl. channel. The bottom panels show the
ratio of data to MC predictions.
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Figure A.11: A comparison of the observed data and prediction for the individual
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Figure A.13: A comparison of the observed data and prediction for the dilepton
properties in the ppu 2-b incl. channel. The bottom panels show the ratio of MC
to data predictions.
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Appendix B

Kinematic Likelihood method

The Kinematic Likelihood Fitter (KLFitter) [58] reconstructs the ¢¢ system using
a likelihood approach. It is designed to permute objects (leptons, jets) observed
in an event between each possible location in a given decay topology and for each
permutation calculate a likelihood with parameters usually set by:

e Transfer functions for the energies and angular measurements of the objects

— The probability of measuring a certain value for an observable, given the
true value of the associated model parameter. These are derived from
MC, and depend on the type of objects and n-region and are motivated
by detector geometry.

e Breit-Wigner functions
— These provide constraints based on particle mass.

The likelihood is used to determine the agreement between the reconstructed
event and the decay model signature. For each permutation of objects, the likeli-
hood function is maximised during the fit. After all permutations are considered,
a probability is calculated for each and the ’best permutation’ is identified, which
is considered to represent the most likely association of measured objects to decay
products within the model as well as their fitted four-vectors.

In the dilepton channel, the system is under-constrained due to the unknown
neutrino kinematics. A neutrino-weighting method is utilised alongside the four-
momenta of two jets and two charged leptons. The likelihood uses transfer func-
tions W (...) for the leptons and jets, as well as Gaussian Functions G(...) to de-
scribe the transfer functions of the missing transverse momentum as a function
of the ntrunio four-momenta and the probability density function of the neutrino
pseudoradidity distributions [58].
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The probability density functions for the neutrino pseudorapidities distribu-
tions have a dependence on the top mass which is assumed to be linear.

This method shows comparable performance with NW, but at a higher CPU
cost. Due to the substantial increase in required processing time the KLFitter is
not utilised for this analysis.
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Appendix C

Comparison of NW and KLF

Two tt reconstruction algorithms were considered for the analysis: the Neutrino
Weighter (NW) and Kinematic Likelihood Fitter (KLFitter). These were tested
using the AnalysisTop Release 20 framework with the old nominal ¢f sample. The
best performing algorithm was then used for the Release 21 analysis.

As a first test, it was seen how stable the two methods would be against recon-
structed variables such as lepton and ¢¢ pr, pseudorapidity () and azimuthal angle
(¢) quantities. The events were required to match up according to run number
and event number. The performance variable on the y-axis was the mean rapidity
difference between the top and antitop at reconstruction level minus that at par-
ton (truth) level. This is labelled Mean ¢t _dy RES. The idea was to see if this
resolution deviated from 0 as a function of this variable and if cuts could therefore
be placed on the variable to improve the overall performance. Some original cuts
in place were the requirement of one lepton to have a transverse momentum, pr
> 28 GeV (to pass the High-Level Trigger), and the other electron a pr > 25
GeV. Greater than 1 jet and greater than 0 b-tagged jets at 77 % efficiency were
also required per event. The NW and KLFitter required their event reconstruc-
tion quality parameters (d_weight_max and log-likelihood variables) to be > 0.
Fig. C.1-C.4 shows the stabilities for a range of reconstructed variables.
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From the pr plots, it can be seen that as these variables increase, the stability
decreases for both algorithms. This is largely due to fewer statistics in this regime.
Performing a cut at these higher values may not necessarily improve the perform-
ance but rather lead to a loss of potentially interesting high-energy events.

Other variables plotted included the NW d_weight_max and similarly the KLFitter
log-likelihood. These are shown in Fig. C.5 and C.6.
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It was decided to keep events of maximum weight > 0 for the NW and log-
likelihood > 0 for the KLFitter as they currently are. This does remove a fair
fraction of events for the NW and KLFitter as can be seen in Fig. C.7 and C.8
so will have a non-negligible improvement on the performance. Fig. C.9 and C.10

show the rapidity, y, values for ¢t cases.
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Figure C.7: Number of events binned by Figure C.8: Number of events binned by
NW max weight. KLFitter log-likelihood.
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From the top and antitop mass plots, there is a clear linear trend. This is to
be expected since the truth level top mass is constrained to its known value but
the reco-level masses are allowed to float around this.

To conclude this study, it is clear the NW and KLFitter perform similarly, but
in some cases, the KLFitter performs worse. This is surprising since with more
freedom to smear and building on NW information, one would expect the KLFitter
to perform better overall. It was thus decided to use the NW for the analysis.

C.0.1 Old method used only at the beginning of the ana-
lysis

Top quark kinematic reconstruction is tested based on a kinematic fitting (min-

imum y?) method developed for this analysis. The three vectors of two neutrinos

from W bosons can be determined by minimizing the x? defined as below equation.

For each event, the x? is minimized with each possible permutation of the
b-jets, leptons in the final state.

2 2 2 2
2 — mlllll — Mmw + blml11/1 — my + ml2U2 — My + melgllz — my
X O'mW Omy O'mW Omy
T,V T, v Emiss ? v + v Emiss ?
+ (p V1 +p V2 T ) + (py, 1 py, 2 Y ) (Cl)

UMET(mtE) UMET(mtf)

The first and third terms are constraint from the W boson mass, the second and
forth terms are constraint from the top quark mass, and the last two terms cor-
respond to constraint from measured EF. In the fitting process, p;, n, ¢ of
each neutrino (v1,2) are treated as free parameters. This method is no longer
used since it cost much CPU time and the performance is comparable to the other
methods.

105



Appendix D

Response matrix

In the inclusive and differential measurements, response matrices were derived for
use in the unfolding procedure. The response matrices are shown graphically below
for the inclusive and differential measurements. The values on the x-axis repres-
ent the truth Aly| bins: 4 for the inclusive measurement, 20 for the differential
measurement with respect to my; (4 Aly| bins in each of the 5 my; bins), 12 for
the differential measurements with respect to p4 (4 Aly| bins in each of the 3 p4
bins), and 16 for the differential measurements with respect to 8% (4 Aly| bins
in each of the 4 % bins). The y-axis represents the reconstructed values for the
same binning configuration as the x-axis. These matrices are shown below for the
inclusive measurement in Fig. D.1-D.3.
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Figure D.1: The response matrices in the ey 1 b-tag and 2 b-tag channel, split by
positive and negative lepton charge, for the inclusive measurement.
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Figure D.3: The response matrices in the pu 1 b-tag and 2 b-tag channel, split by
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At the differential measurement, these matrices are also shown in my; (Fig. D.4-
D.6), pt (Fig. D.7-D.9) and % (Fig. D.10-D.12).
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Figure D.4: The response matrices in the ey 1 b-tag and 2 b-tag channel, split by
positive and negative lepton charge, for the differential m;; measurement.
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Figure D.6: The response matrices in the pp 1 b-tag and 2 b-tag channel, split by
positive and negative lepton charge, for the differential m;; measurement.
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Figure D.11: The response matrices in the ee 1 b-tag and 2 b-tag channel, split
by positive and negative lepton charge, for the differential 5 measurement.
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Figure D.12: The response matrices in the pup 1 b-tag and 2 b-tag channel, split
by positive and negative lepton charge, for the differential 5 measurement.
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Appendix E

Iterative Bayesian method

The unfolding from reconstruction level to parton level is carried out using the
RooUnfold package with an iterative method inspired by Bayes’ theorem. The
number of iterations in the unfolding procedure is chosen to be four while it should
be optimized to balance the goodness of fit and statistical uncertainties.

The detector response is described using a migration matrix that relates the
generated parton(particle)-level distributions to the measured distributions. The
migration matrix M is determined using Powheg+Pythia8 t¢ Monte Carlo simu-
lation, where the parton-level top quark is defined as the top quark after radiation
and before decay.

Fig. E.1(a) and E.1(b) present the migration matrices of the top quark pr and
rapidity in the ey channel. The matrix element M;; represents the probability for
an event generated at parton level with X in bin ¢ to have a reconstructed X in
bin j, so the elements of each row add up to unity (within rounding uncertainties).
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Figure E.1: Migration matrices of the top quark pr and rapidity in the ey channel
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The probability for the parton-level events to remain in the same bin in the
measured distribution is shown in the diagonal, and the off-diagonal elements
represent the fraction of parton-level events that migrate into other bins. Fig. E.2

shows two dimensional response matrix for A|y;z| X myz.
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Figure E.2: Two dimensional response matrix (A|y;z| X my;)

E.0.1 Closure test

When using pseudo-data generated with the help of Monte Carlo simulations, the
truth distribution is known, thus the unfolding results may be directly compared
to it. Such comparisons, where pseudo-data are unfolded and compared to the
truth are often called closure tests. The closure tests are based on independent
Monte Carlo samples. Fig. E.3 shows the result of closure test in differential A% as
a function of the mass of ¢ system. The result shows that the unfolded A% value
is not closer to the truth A’g value and does not converge even if the number of
times of iteration increases (especially 2nd my; bin ([450,750] GeV)). As a result,
the unfolded A’g should be evaluated without using iterative Bayesian method.
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Appendix F

PROTOS reweighting

To test if there is any bias in the unfolding procedure and how correctly unfold
back to expected charge asymmetry, a linearity test and binning optimization were
carried out as discussed in Sec. 7.4. The benchmark distributions with arbitrary
shifted charge asymmetry for above tests are generated by using PROTOS #t
generator [64]. To generate benchmark points, the process of light axigluon decay
into top anti-top pair with various couplings are considered. In table F.1, the
parameters used in PROTOS are summarized.

Table F.1: Parameters’ settings used to simulate different values of the Atct_ in
PROTOS.

| maislien [GeV] | gul | guR | gdL | gdR | gtL | gtR
SM - 0.0 00]00]007]00]00
1% | 250. £50. |-01| 01 |[-01] 01 |[-1.9] 1.9
2% | 250. £50. |-0.1| 0.1 |-0.1] 0.1 |-3.9] 3.9
3% | 250. £50. |-0.1] 01 |-0.1] 0.1 |-6.1] 6.1
4% | 250. £50. |-0.1] 01 |-0.1] 0.1 |-83] 83

The simulated Aly| distributions are shifted base on the reweighting function
derived by taking the ratio between shifted and nominal distributions (see Fig. F.1)
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Appendix G

Nuisance parameters

In this section all the Nuisance parameters for inclusive and differential measure-
ments are presented for the dilepton channel. The nuisance parameters are ob-
tained through the marginalization procedure of Full Bayesian Unfolding(FBU),
as shown in Fig. G.1 for the inclusive measurement, Fig. G.2 for the differential
measurement as a function of the invariant mass of the tf system, Fig. G.3 for
the differential measurement as a function of the transeverse momentum of the
tt system, Fig. G.4 for the differential measurement as a function of the trans-
verse boost of the ¢t system. These black dots correspond to asimov data. These
red dots correspond to data(79.7 fb~!) fit. These color regions highlight the 1o
(green) and 20 (yellow) intervals of the prior probability density. The estimations
of nuisance parameters are using PYMC3.
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Figure G.1: Nuisance parameters for the inclusive A’g measurement using asimov
data and data (79.7 fb~!) in dilepton channel. The color regions highlight the 1o
green) and 20 (yellow) intervals of the prior probability density. The boostrapping
is applied, fit is performed with 10000 steps, while 2500 steps are used for tuning
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Figure G.2: Nuisance parameters for the Ag measurement as a function of the ¢t
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regions highlight the 1o (green) and 20 (yellow) intervals of the prior probability
density. The boostrapping is applied, fit is performed with 10000 steps, while 2500
steps are used for tuning.
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transverse momentum of the ¢ system using asimov data (black dots) and data
(79.7 tb™1) (red dots). The color regions highlight the 1o (green) and 20 (yel-
low) intervals of the prior probability density. The boostrapping is applied, fit is
performed with 10000 steps, while 2500 steps are used for tuning.
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Figure G.4: Nuisance parameters for the A’g measurement as a function of the
boost of the tt system using asimov data (black dots) and data (79.7 fb™1) (red
dots). The color regions highlight the 1o (green) and 20 (yellow) intervals of the
prior probability density. The boostrapping is applied, fit is performed with 10000
steps, while 2500 steps are used for tuning.
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Appendix H

Test of signal modeling
uncertainties

In order to check that there is not too strong constrains for the uncertainties re-
lated to singal modelling for the unfolded result, total uncertainties are compared.
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Figure H.3: Comparison of profiling plot for the A% measurement as a function of
the transverse momentum of the ¢t system.
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Figure H.4: Comparison of profiling plot for the A% measurement as a function of
the boost of the ¢t system.
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A comparison of ME and PS affecting the measurements are shown in Table H.1
using MC samples.

Table H.1: Comparison of unfold Ag value with ME and PS from the different
source affecting the A’g in full phase space

| | unfold A w/o ME+PS | unfold A w/ ME+PS |

| inclusive | 0.0033 | 0.0033 |
< 500 GeV 0.0027 0.0029
my; 500-750 GeV 0.0030 0.0028
750-1000 GeV 0.0064 0.0063
1000-1500 GeV 0.0015 0.0016
> 1500 GeV 0.0120 0.0112
<30 GeV 0.0092 0.0095
Prae 30120 GeV 0.0003 0.0005
> 120 GeV 0.0004 0.0006
0-0.3 -0.0005 -0.0004
Bt 0.3-0.6 0.0011 0.0012
0.6-0.8 0.0026 0.0026
0.8-1.0 0.0083 0.0084

The unfolded inclusive and differential charge asymmetries using different scen-
arios with (dark blue) and without (red) marginalization of the PS and ME un-
certainties are shown in Fig. H.5.
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